research

Inlets, ducts and nozzles

Abstract

The internal fluid mechanics research program in inlets, ducts, and nozzles is described. The program consists of a balanced effort between the development of computational tools and the conduct of experimental research. The experiments are designed to better understand the fluid flow physics, to develop new or improved flow models, and to provide benchmark quality data sets for validation of the computational methods. The inlet, duct, and nozzle research program is described according to three major classifications of flow phenomena: highly three-dimensional flow fields; shock-boundary layer interactions; and shear layer control. Specific examples of current and future elements of the research program are described for each of these phenomena. In particular, the highly three-dimensional flow field phenomena is highlighted by describing the computational and experiemental research program in transition ducts having a round-to-rectangular area variation. In the case of shock-boundary layer interactions, the specific details of research for normal shock-boundary layer interactions are described. For shear layer control research in vortex generators and the use of aerodynamic excitation for enhancement of the jet mixing process are described. Future research in inlets, ducts, and nozzles will include more emphasis on three-dimensional full Navier-Stokes methods and corresponding experiments designed to concentrate on the appropriate three-dimensional fluid flow physics

    Similar works