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We report on results of our theoretical study of the c-axis infrared conductivity of bilayer high-Tc cuprate
superconductors using a microscopic model involving the bilayer-split �bonding and antibonding� bands. An
emphasis is on the gauge invariance of the theory, which turns out to be essential for the physical understand-
ing of the electrodynamics of these compounds. The description of the optical response involves local �intra-
bilayer and interbilayer� current densities and local conductivities. The local conductivities are obtained using
a microscopic theory, where the quasiparticles of the two bands are coupled to spin fluctuations. The coupling
leads to superconductivity and is described at the level of generalized Eliashberg theory. Also addressed is the
simpler case of quasiparticles coupled by a separable and nonretarded interaction. The gauge invariance of the
theory is achieved by including a suitable class of vertex corrections. The resulting response of the model is
studied in detail and an interpretation of two superconductivity-induced peaks in the experimental data of the
real part of the c-axis conductivity is proposed. The peak around 400 cm−1 is attributed to a collective mode
of the intrabilayer regions, which is an analog of the Bogolyubov-Anderson mode playing a crucial role in the
theory of the longitudinal response of superconductors. For small values of the bilayer splitting, its nature is
similar to that of the transverse plasmon of the phenomenological Josephson superlattice model. The peak
around 1000 cm−1 is interpreted as a pair-breaking feature that is related to the electronic coupling through the
spacing layers separating the bilayers.

I. INTRODUCTION

The c-axis infrared response of the high-Tc cuprate super-
conductors �HTCSs� is strongly sensitive to doping.1–3 For
underdoped HTCS, it reveals a surprisingly weak coupling
between adjacent unit cells4 and a pronounced pseudogap
�PG�.5 In optimally doped materials, the real part of the
normal-state �NS� conductivity �c is almost frequency and
temperature independent for a broad range of frequencies
and temperatures.3 In contrast, the response of overdoped
HTCS exhibits a metallic behavior.3 These findings, in par-
ticular the pseudogap, and the qualitative nature of the
changes across the phase diagram, make the c-axis response
one of the most interesting properties of the HTCS �for a
review see Ref. 6�. In materials with two copper-oxygen
planes per unit cell �the so-called bilayer compounds�, the
c-axis response also reflects the electronic coupling within
the pair of closely spaced planes, which is of high interest for
the following reasons: �i� Its renormalization with respect to
the noninteracting case is an important fingerprint of the
electronic correlations of the ground state. �ii� For under-
doped HTCS, the manifestations of the pseudogap in �c in-
terfere with those of the coupling. A prerequisite for an un-
derstanding of the c-axis pseudogap is, thus, a
disentanglement of the former from the latter. �iii� The cou-
pling may contribute to the condensation energy �see Refs. 7
and 8 and references therein�.

The character of the coupling has been debated since the
early years of the high-Tc research. According to the conven-
tional band theory, the hopping between the planes should
lead to a splitting of the conduction band into two branches:
a bonding branch corresponding to states that are symmetric

with respect to the mirror plane in the middle of the bilayer
unit, and an antibonding branch corresponding to states that
are antisymmetric.9 For some regions of the Brillouin zone
�BZ�, the bonding band is expected to be located below the
Fermi level and the antibonding band above, which should
give rise to the interband transitions.10

The experimental NS infrared spectra of the bilayer com-
pounds, however, do not contain any structure that could be
easily attributed to the transitions. Furthermore, the 20th-
century photoemission experiments did not reveal the split-
ting of the conduction band. These findings could be inter-
preted in terms of strong electronic correlations localizing
charged quasiparticles in individual planes, even in the case
of the bilayer unit, and inhibiting the band splitting. The
simple band-structure-based picture of the NS, thus, seemed
to have failed. The experimental superconducting �SC�-state
infrared spectra of underdoped bilayer compounds exhibit
features that are almost certainly related to the bilayer cou-
pling: a broad absorption peak in the spectra of Re �c in the
frequency region between 350 cm−1 and 550 cm−1 �labeled
as P1 in the following�, and related anomalies of some
infrared-active phonons.1,2,11 These features, however, also
appear to be consistent with the absence of the conduction-
band splitting and the localization of charged quasiparticles:
It was shown that they can be well understood and in some
cases even fitted11,12 using the phenomenological model,
where the stack of the copper-oxygen planes is represented
by a superlattice of interbilayer and intrabilayer Josephson
junctions �the so-called Josephson superlattice model
�JSM��.13 The mode P1 has been attributed to the transverse
plasma mode of the model. A microscopic justification of the
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model in terms of quasiparticle Green’s functions has been
provided by Shah and Millis.14

In the beginning of the 21st century, the situation
changed. In particular, several groups have reported observa-
tions of two separate conduction bands in photoemission
spectra.15–19 The JSM is obviously not consistent with this
observation. In addition, it became clear that the SC-state
spectra of Re �c of YBa2Cu3O7−� �Y-123� exhibit two dis-
tinct superconductivity-induced modes: the mode P1 dis-
cussed above and another one around 1000 cm−1 �to be la-
beled as P2�.8,20 It has been proposed that the two are related,
but in the light of the results of the recent systematic study
by Yu et al.20 this appears to be unlikely. The presence of P2
cannot be accounted for in terms of the JSM. These facts,
thus, call for a replacement of the simple phenomenological
JSM with a more sophisticated theory involving the bilayer-
split bands. Here we present such a theory and provide a
fully microscopic interpretation of the superconductivity-
induced modes P1 and P2.

The basic ingredients of the theory are: �i� The local cur-
rent densities, conductivities, fields, and a generalized
multilayer formula. The local current densities of the intra-
bilayer and interbilayer regions are expressed in terms of
local conductivities and local fields. The fields differ from
the average field because of charge fluctuations between the
planes. Macroscopic considerations of these charging effects
lead to a formula for the total c-axis conductivity, which
represents an extension of the common multilayer formula.13

�ii� The local conductivities are calculated using a micro-
scopic model and the linear-response theory. This is the main
difference with respect to the phenomenological JSM, where
they are estimated or obtained by fitting the data. �iii� The
microscopic description involves the two bilayer-split bands.
The relevance of the bilayer splitting to the interpretation of
the c-axis response has been pointed out in Ref. 21. �iv� The
charged quasiparticles of the two bands are coupled to spin
fluctuations. The coupling is treated at the level of general-
ized Eliashberg theory, as in Ref. 22. �v� The gauge invari-
ance of the theory, required for a consistent, i.e., charge con-
serving description of the charging effects, has been achieved
by including a class of vertex corrections �VC� ensuring that
the renormalized current vertices satisfy the appropriate
Ward identities. The vertex corrections will be shown to lead
to dramatic and qualitative changes in the calculated re-
sponse, similar to those occurring in case of the longitudinal
response of a homogeneous superconductor.

Calculated spectra of Re �c allow us to understand the
nature of the peaks P1 and P2. The former will be shown to
correspond to a collective mode resembling the Bogolyubov-
Anderson mode of homogeneous superconductors and the
latter to a pair-breaking �bonding-antibonding� peak.

The rest of the paper is organized as follows. In Sec. II we
present the essential aspects of the theory, the values of the
input parameters, and some computational details. Section III
contains results and discussion. In Sec. III A we focus on the
relatively simple case of a Bardeen-Cooper-Schrieffer
�BCS�-like interaction between the quasiparticles. The analy-
sis allows one to understand the consequences of the bilayer
splitting and the role of the vertex corrections, but the result-
ing spectra of Re �c are not sufficiently realistic. The com-

plex case of quasiparticles coupled to spin fluctuations is
addressed in Sec. III B. It will be shown that the calculated
SC-state spectra display two distinct modes, similar to the
experimental ones. Section III C presents a comprehensive
discussion of the relation between theory and experiment
including the interpretation of the superconductivity-induced
modes. The summary and conclusions are given in Sec. IV.
The readers interested only in the main findings of the paper
may consider skipping Sec. II, and some technical parts of
Secs. III A and III B.

II. THEORY

In this section we elaborate on the basic ingredients of our
theory mentioned in Sec. I. First we briefly describe a phe-
nomenological approach to the c-axis electrodynamics of the
bilayer systems. In the subsequent paragraphs, we build up a
corresponding microscopic description.

A. Multilayer model

The multilayer model proposed by van der Marel and
Tsvetkov13 provides a phenomenological description of the
c-axis electrodynamics of bilayer cuprates. These com-
pounds are considered as consisting of homogeneously
charged copper-oxygen planes separated by intrabilayer �bl�
and interbilayer �int� spacing regions �see Fig. 1�. The dielec-
tric function of the intrabilayer region,

�bl��� = �� +
i�bl���
�0�

, �1�

contains the interband dielectric constant �� and the local
conductivity �bl defined by jbl=�blEbl, where jbl is the local
current density and Ebl is the local field. The interbilayer
region is described in a similar way using the local conduc-
tivity �int. To obtain the macroscopic �total� c-axis dielectric
function ����, modifications of the local fields due to the
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FIG. 1. �a� Crystal structure of Y-123. �b� Multilayer model,
where intrabilayer and interbilayer current densities jbl and jint lead
to a charge redistribution between the CuO2 planes, which modifies
the local fields Ebl and Eint.
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charging of the planes have to be considered. The result is

d

����
=

dbl

�bl���
+

dint

�int���
. �2�

An extended version of the model that we use in this
paper includes the dependence of the local current densities
on both local fields,

jL = �
L�

�LL�EL�, L,L� � �bl,int� . �3�

The total c-axis conductivity �c��� is given as the ratio of
the average current density 	j
= �dbljbl+dintjint� /d to the av-
erage electric field 	E
= �dblEbl+dintEint� /d. By employing
the continuity relation between the charge and current densi-
ties jint− jbl=�� /�t and the effect of the charged planes on the
local fields, Ebl−Eint=� /�0�� �see Fig. 1�, we arrive at

�c��� =
dbl�bl/bl + dint�int/bl

dbl + dint�
+

dbl�bl/int + dint�int/int

dbl�
−1 + dint

, �4�

where

� =
Eint

Ebl
=
�� + �bl/bl − �int/bl

�� + �int/int − �bl/int
�5�

and ��=−i��0��. The total dielectric function is given by
����=��+ i�c��� /�0�.

In the following we describe the calculations of the local
conductivities �LL� based on a microscopic model. The sub-
sequent incorporation of the interplane Coulomb interaction
will then provide a microscopic justification for the phenom-
enological treatment of the plane-charging effects used in the
model of van der Marel and Tsvetkov.

B. Electronic structure—tight-binding bands, their
renormalization, and superconductivity

One of the main components of our microscopic calcula-
tions is the two bilayer-split bands. We, therefore, begin with
the tight-binding description of these bands. The usual form
of the in-plane dispersion

	k�
= − 2t�cos kxa + cos kya� − 4t� cos kxa cos kya �6�

will be considered, with the nearest-neighbor and second-
nearest-neighbor hopping matrix elements t and t�. The in-
trabilayer hopping is governed by the hopping matrix ele-
ment t�k�

that is assumed to depend on kx and ky as

t�k�
=

t� max

4
�cos kxa − cos kya�2. �7�

This approximate form is suggested by the results of local-
density approximation �LDA� calculations9 and is roughly
consistent with experimental data on Bi2Sr2CaCu2O8+�
�Bi-2212�.16 Let us note that the essential results of our cal-
culations do not depend on the form of t�k�

, what matters is
the magnitude. In addition to the intrabilayer hopping, we
consider a weak coupling through the interbilayer region
with the matrix element t�k�

� of the same k dependence as
t�k�

. The interlayer hopping splits band �6� into two bands—

bonding �B� and antibonding �A�—with the dispersions

	B/Ak = 	k�

 �t�k�

2 + t�k�
�2 + 2t�k�

t�k�
� cos kzd . �8�

To account for the renormalization of charged quasiparti-
cles and the superconducting pairing we adopt the spin-
fermion model, where the quasiparticles are coupled to spin
fluctuations. In the case of a single band, the model self-
energy �2 by 2 matrix� is given by

��k, iE� =
g2

�N
�

k�,iE�

SF�k − k�, iE − iE��G�k�, iE�� , �9�

which can be schematically written as the convolution �
=g2SF�G. Here g is the coupling constant, SF is the Mat-
subara counterpart of the spin susceptibility, and G the
Nambu propagator, G�k , iE�= �iE�0− ��k−���3−��k , iE��−1.

The generalization to the two band case is straightforward
and the self-energies can be expressed as23,24

�B/A = g2SF
odd � GA/B + g2SF

even � GB/A, �10�

where we distinguish between the spin-susceptibility chan-
nels of even �SF

even� and odd �SF
odd� symmetry with respect to

the mirror plane in the center of the bilayer unit. The dia-
grammatic representation of �B/A is shown in Fig. 2�a�. We
have used the same form of SF containing the resonance
mode and a broad continuum as in Ref. 22 �details will be
given in Sec. II F�. The spin susceptibility consisting of the
mode and a continuum has been successfully used by Es-
chrig and Norman25 to explain various aspects of the charged
quasiparticles in the high-Tc cuprates �for a review, see Ref.
26�.

Since the results of the self-consistent calculations based
on the spin-fermion model are difficult to interpret, we first
resort to the BCS level. The results obtained this way are
easier to understand because of the absence of retardation
and better possibilities of analytical manipulations of the for-
mulas. The even- and odd-interaction channels are assumed
to be equivalent, which leads to the same superconducting
gap �k= 1

2�max�cos kxa−cos kya� in both bands determined
by

�k = − �
k�,n��A,B�

Vkk�

�k�

2Ek�n
tanh

�Ek�n

2
, �11�

where Vkk�=−�wkwk� with wk= �cos kxa−cos kya� /2 is the
BCS interaction of d-wave symmetry and EkA/B is the usual

BCS quasiparticle energy EkA/B=��	kA/B−��2+�k
2. For

details see the Appendix.

C. Response to electromagnetic field

Here we calculate the response of the model to the c-axis
polarized electromagnetic field represented by the external
vector potential Aext= �0,0 ,Aext�eiq·R−i�t. The coupling of the
tight-binding model to the electromagnetic field can be ob-
tained by multiplying each hopping term by the correspond-
ing Peierls phase factor according to the prescription27–29

cR
† cR�→exp�−�ie /��Aext · �R−R���cR

† cR�. To fit the scheme of
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Sec. II A, we formally distinguish between the vector poten-
tials Abl and Aint, used for the hopping processes through the
intrabilayer and interbilayer regions, respectively. By ex-
panding to the second order in the vector potentials, we ar-
rive at the coupling Hamiltonian that can be used for extract-
ing the c-axis paramagnetic and diamagnetic current-density
operators.27 The paramagnetic current density for q=0, aver-
aged over the corresponding region �bl/int�, can be expressed
as

ĵbl/int
p = −

ie

Na2�
�
k�kzs

��Jbl/int,k
�1� �cAks

† cBks − cBks
† cAks�

+ Jk
�2��cAks

† cAks − cBks
† cBks�� �12�

with the matrix elements

Jbl,k
�1� =

2t�k�
�t�k�

+ t�k�
� cos kzd�

	Ak − 	Bk
�13�

and

Jk
�2� =

2it�k�
t�k�
� sin kzd

	Ak − 	Bk
. �14�

The matrix element Jint,k
�1� is obtained from Jbl,k

�1� simply by
interchanging t�k�

and t�k�
� . In the t�k�

� =0 case, where Jbl,k
�1�

= t�k�
and Jint,k

�1� =Jk
�2�=0, we arrive at the simplified expres-

sion

ĵbl
p = −

ie

N�a2�
�
k�s

t�k�
�cAk�s

† cBk�s
− cBk�s

† cAk�s
� . �15�

The summation runs over k� from the two-dimensional �2D�
Brillouin zone only and N is reduced accordingly. The dia-
magnetic current density is given by

ĵbl/int
d = −

e2dbl/intAbl/int

Na2�2 �
k�kzs

�Jbl/int,k
�1� �nBks − nAks�


 Jk
�2��cAks

† cBks − cBks
† cAks�� . �16�

In the t�k�
� =0 case, Eq. �16� simplifies to

ĵbl
d = −

e2dblAbl

N�a2�2 �
k�s

t�k�
�nBks − nAks� . �17�

The total c-axis conductivity is constructed along the lines
of Sec. II A. To this end, the current densities induced by the
electric fields EL= i��+ i��AL�L� �bl, int�� have to be calcu-
lated and the local conductivities determined from jL�q ,��
=�L��LL��q ,��EL��q ,��. At this point, the fields EL� are still
equal to the external field Eext. However, it will be shown in
Sec. II E that the local conductivities calculated as outlined
above, ignoring the charging effects play exactly the same
role as in Eq. �3�, i.e., they represent the response to the local
fields. Within the framework of the linear-response theory,
the local conductivities are given by the Kubo formula

�LL��q,�� =
�e2/�2�KL�LL� +�LL��q,��

i�� + i��
. �18�

The first term in the numerator,

Kbl/int = −
dbl/int

Na2 �
k�kzs

Jbl/int,k
�1� 	nBks − nAks
 , �19�

comes from the diamagnetic current densities and is related
to the c-axis kinetic energy:27 In the t�k�

� =0 case, Kbl

= �dbl /a2�	T
, where 	T
 is the intrabilayer kinetic energy per
unit cell,

T = − �1/N���k�s
t�k�

�nBk�s
− nAk�s

�

= − �1/N���R�R��s
t�R�R��

�c2R�s
† c1R��s + c1R�s

† c2R��s� .

The second term in Eq. �18� is the retarded correlation func-
tion of the paramagnetic current densities

�LL��q,�� = i
Na2dL�

�


−�

�

dtei�t	�ĵL
p�q,t�, ĵL�

p �− q,0��
��t� .

�20�
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FIG. 2. �a� Diagrammatic representation of the self-energies of
the bonding �B� and antibonding �A� bands. The propagators of the
electronic quasiparticles and spin fluctuations are represented by the
straight and the wiggly lines, respectively. �b� Simple bubble ap-
proximation to current-current correlator �20�. Only the part given
by Eq. �21� is shown. The black dots are the current vertices corre-
sponding to jbl

p . �c� Current-current correlator with a renormalized
current vertex �Eq. �23��. The diagrams corresponding to the case of
t�k�
� =0 with no intraband contributions are shown. �d� Diagram-

matic representation of the Bethe-Salpeter Eq. �24�. �e� Diagram-
matic representation of the equation determining the current-current
correlator including plane-charging effects. The dashed lines corre-
spond to the interplane Coulomb interaction.ht
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In the simplest approximation, the correlator is obtained
by evaluating the bubble diagrams where the two current
vertices are joined by two electron propagator lines. This is
the approximation, where the vertex corrections are ne-
glected. Since the propagators refer to the two bands, there
are four possible combinations in total. Two of them corre-
spond to interband transitions and their contribution to the
Matsubara counterpart of Eq. �20� at q=0 equals

�LL�
NV�1��q = 0,i���

= 

e2

�2

dL�

Na2�
�
k,iE

JL,k
�1� JL�,k

�1� Tr�GA�k,iE + i���

�GB�k,iE� + GB�k,iE + i���GA�k,iE�� �21�

with the minus sign for L=L� and plus sign for L�L�. The
corresponding diagrams are presented in Fig. 2�b�. For t�k�

�
�0, all the conductivity components acquire, in addition, an
intraband contribution given by

�LL�
NV�2��q = 0,i���

= −
e2

�2

dL�

Na2�
�
k,iE

Jk
�2�Jk

�2�Tr�GA�k,iE + i���

�GA�k,iE� + GB�k,iE + i���GB�k,iE�� . �22�

This contribution has a similar frequency dependence as the
in-plane conductivity, the main difference coming from the k
dependence of the matrix element Jk

�2�. Typically, it is rather
small compared to Eq. �21�.

D. Vertex corrections

The well-known deficiency of the simple bubble approxi-
mations such as the one leading to Eqs. �21� and �22� is the
lack of the gauge invariance which manifests itself, e.g., by a
violation of the normal-state restricted sum rule for the con-
ductivity. For the normal state the conductivity components
should satisfy the sum rule �0+

� Re �LL���d�
=−��e2 /2�2�KL. While the discrepancy between the left-
hand side and the right-hand side in the corresponding case
of the in-plane response is rather small �of the order of 1%
�Ref. 22��, here it is quite detrimental—typically 20%–
30%—as demonstrated in Sec. III. Since there is an intimate
relation between the gauge invariance of the response func-
tions and the charge conservation, the large discrepancy in-
dicates that the continuity equation between the current and
charge densities is not even approximately satisfied. As a
consequence, the use of the formula �4�, which relies on the
continuity equation, becomes questionable. In the following
paragraph we show explicitly how the requirement of gauge
invariance enters a microscopic derivation of the formulas of
Sec. II A.

To avoid the problems mentioned above, a gauge-
invariant extension of the approximation �21�+ �22� is neces-
sary. As found by Nambu,30 the gauge invariance of the re-
sponse function is guaranteed if we replace the bare current-
density vertex with a properly renormalized one. The
required renormalization of this vertex �i.e., of the interaction

of the quasiparticles with photons� is determined by the form
of the quasiparticle self-energy via the generalized Ward
identity.31

Here the situation is complicated by the presence of the
two bands. To be able to express all the contributions in a
systematical way, we first introduce the bare vertex factors
�ie /Na2���nm

L �k� �with m ,n� �A ,B�� inferred from Eq. �12�.
In the corresponding diagram, the mth band propagator line
with momentum k enters the current vertex of jL

p and the nth
band propagator line leaves it. The possible combinations
are: �AB

bl =−�BA
bl =Jbl,k

�1� , �BA
int =−�AB

int =Jint,k
�1� , and �BB

bl =−�AA
bl

=�BB
int =−�AA

int =Jk
�2�. The correlator �LL� involving the renor-

malized current vertices �nm
L �k , iE , i���

�LL�
VC �q = 0,i���

=
e2

�2

dL�

Na2�
�

k,iE,mn��A,B�
Tr��mn

L� �k�Gm�k,iE�

��nm
L �k,iE,i���Gn�k,iE + i���� �23�

contains two interband contributions with mn=AB and mn
=BA. The corresponding diagrams are shown in Fig. 2�c�.
For t�k�

� =0, these are the only contributions. In the t�k�
� �0

case, also the intraband terms with mn=AA and mn=BB
contribute.

The renormalized vertices �nm
L �k , iE , i��� consistent with

the electronic self-energies of the two bands obey the Bethe-
Salpeter equations of the form diagrammatically shown in
Fig. 2�d�. At this point, we have to distinguish between the
spin-fluctuation-mediated interaction and the BCS interac-
tion, allowing for further analytical simplifications. Evaluat-
ing the diagrams in the former case we arrive at

�AB
L �k,iE,i��� = �AB

L �k��0 +
g2

�N
�

k�,iE�

SF
even�k − k�,iE − iE��

� GB�k�,iE���AB
L �k�,iE�,i���GA�k�,iE� + i���

+
g2

�N
�

k�,iE�

SF
odd�k − k�,iE − iE��

� GA�k�,iE���BA
L �k�,iE�,i���GB�k�,iE� + i��� �24�

and similar equations for the other renormalized vertices.
Intraband current vertices �AA

L and �BB
L turn out to be simply

the bare ones because of the symmetry of �AA
L �k� and �BB

L �k�
�odd functions of kz�, and qz independence of SF�q ,�� as-
sumed in the t�k�

� �0 case. In the BCS case, the interaction is
nonretarded and separable, which leads to a simple k depen-
dence and iE independence of �: �AB

L �k , i���=�AB
L �k�

+�wkCL�i���. Here � is the BCS coupling constant and wk is
the d-wave symmetry function introduced in Sec. II B. The
Bethe-Salpeter equations and the current-current correlators
can then be treated to a large extent analytically,31 as shown
in the Appendix. In addition, the intraband contributions are
exactly zero in the optical limit of q→0.
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E. Random phase approximation of plane-charging effects

In Sec. II A, we presented the results of a phenomenologi-
cal approach to the effects due to the charging of the planes.
Here we outline a rigorous microscopic derivation of Eq. �2�,
where these effects are treated at the level of the random-
phase approximation �RPA�. For the sake of simplicity, we
restrict ourselves to the case of insulating interbilayer
regions.

The current density within a bilayer unit leads to a redis-
tribution of charge among the CuO2 planes. The electrostatic
interaction of the corresponding charge densities is given by
the interaction Hamiltonian

ĤCoulomb =
Na2dbl

2���0
�̂�̂ , �25�

where �̂ is the excess planar charge density. The current-
current correlator �bl/bl modified by this interaction along the
lines of the RPA approximation, corresponding to the dia-
grammatic series shown in Fig. 2�e�, reads

�bl/bl
RPA =� j−j −� j−� 1

���0 +��−��
�−j , �26�

where � j−j ��bl/bl, �
j−�, ��−j, and ��−� are the correlation

functions obtained without considering the charging effects.
To proceed further toward Eq. �2�, we have to express these
correlation functions using the conductivity-related current-
current correlator � j−j only, eliminating � j−�, ��−j, and
��−�. This can be achieved using the continuity equation for
the charge and current densities. Let us note that the gauge
invariance of the local response functions is the necessary
condition for the continuity equation to be valid. The result
of the elimination can be written as

�bl/bl
RPA =

�bl/bl

1 +
i�bl/bl

���0�

. �27�

The last step is the incorporation of the macroscopic av-
eraging to obtain the macroscopic c-axis dielectric function

���� = �� +
i

�0�

	j

	E


, �28�

where the symbols 	j
 and 	E
 denote the unit-cell averages
of the current density and the electric field, respectively. The
averaged current density is given by 	j
= �dbl /d�jbl since the
interbilayer regions are supposed not to contribute. The mac-
roscopic field 	E
 consists of the homogeneous external field
and the averaged field of the induced charge density 	E

=Eext+ �dbl /d�� /�0��. Using the relation jbl=�bl/bl

RPAEext and
the continuity equation i��= jbl, we obtain

	j
 =
dbl

d
�bl/bl

RPAEext, 	E
 = Eext −
dbl

d

i�bl/bl
RPA

���0�
Eext. �29�

Finally, by inserting these results in Eq. �28�, we arrive at Eq.
�2� with �int=�� and �bl=��+ i�bl/bl /�0�. The local response
function �bl/bl calculated in Secs. II C and II D plays the role
of �bl. In the more general case of Eq. �4�, the derivation is
analogous to the one presented here. We stress that the use of
Eq. �2� and �4� is now accompanied by the requirement of

the gauge invariance of the local conductivities.

F. Input parameters and computational details

The values of most of the input parameters are the same
as in Ref. 22. For the description of the bands we use the
in-plane dispersion with t=350 meV, t�=−100 meV and the
band filling n=0.82. The values of the interplane hopping
parameters will be specified later at the corresponding places
in the text since various regimes of the optical response cor-
responding to various values of these parameters are dis-
cussed. In the multilayer formula, we use dbl=3.4 Å, dint
=12.0 Å, i.e., the values corresponding to Bi-2212, and ��
=5.

The model spin susceptibility has the same form as in
Refs. 32 and 22, containing the 40 meV resonance mode and
a continuum with dimensionless spectral weights of 0.01bM
and 0.01bC, respectively. In the t�k�

� =0 case, we distinguish
between the channels of odd and even symmetry and include
the resonant mode with bM =1 in the odd channel only. The
continuum with bC=2 is present in both channels. For t�k�

�
�0, the bonding and antibonding states are no more of the
simple form �B
 , �A
= ��1
� �2
� /�2, where �1
 and �2
 are
state vectors residing on the first and the second plane of the
bilayer unit, respectively. The linear combination now con-
tains k-dependent coefficients. A proper construction of the
interaction vertices would extensively complicate the theory.
To avoid this complexity, we take bM =1 /2 and bC=2 for
both channels whenever t�k�

� �0.
The coupling constant g=3 eV was chosen to yield Tc

around 90 K and the amplitude of the superconducting gap �
around 30 meV. Some of the calculations were performed on
the simpler BCS level, where we choose the value of the
BCS coupling constant � leading to the same gap amplitude
of 30 meV.

The self-consistent equations for the self-energies �Eq.
�10�� and Bethe-Salpeter �Eqs. �24�� were solved iteratively
using a Brillouin-zone grid of typically 64�64�32 points,
and a cutoff of 8 eV in Matsubara frequencies. In the case of
small t� max�50 meV, the vertex corrections lead to a com-
plete change in the response-function profiles and up to 103

iterations of the Bethe-Salpeter equation are required to
achieve the convergence. The convolutions were performed
using the fast Fourier transform �FFT� algorithm with the use
of the symmetries of � and �. Since the calculations are very
demanding in terms of computer time and memory, we have
used qz-independent spin susceptibility which brings the ad-
vantage of kz-independent � and �−�. The calculated re-
sponse functions were continued to the real axis using the
method of Padé approximants.33

III. RESULTS AND DISCUSSION

A. Quasiparticles paired by the BCS interaction

We begin with the simpler case of insulating spacing lay-
ers, i.e., t�� =0. Figure 3�a� shows the local dielectric function
�bl/bl of the intrabilayer region obtained using the bubble dia-
gram of Fig. 2�b�, i.e., with the vertex corrections neglected
�this is abbreviated as NV�. The thin �thick� lines correspond
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to the normal �superconducting� state and the solid �dashed�
lines represent the imaginary �real� part. The NS response
exhibits a sharp absorption band near 80 meV due to the
interband �bonding-antibonding� transitions. The SC-state re-
sponse involves the superconducting condensate, which
manifests itself in the real part of �bl/bl and a pair-breaking
peak at 110 meV, corresponding to final states with one
Bogolyubov quasiparticle in the bonding band and one in the
antibonding.

Figure 3�b� shows the real part �c of the c-axis conduc-
tivity obtained using the multilayer formula �2� with �bl
=�bl/bl and �int=��. The dominant sharp peaks are located
close to the frequencies of the zero crossings of �bl/bl. This
can be understood using the fact that for �dbl�int�� �dint�bl� Eq.
�2� yields

���� �
d�int

dint
�1 −

dbl�int

dint�bl
� �30�

and the expression on the right-hand side has poles at the
zero crossings of Re �bl. Physically, the response is similar to
that of a system of thin metallic plates embedded in an insu-
lating matrix, exhibiting a peak at the plasma frequency of
the plates �the corresponding effective-medium formulas can
be found in Ref. 34�. The narrow peak at 160 meV of the NS
spectra corresponds to the zero crossing of Re �bl associated
with the interband transitions, the peak of the SC-state spec-
trum at 60 meV to the zero crossing due to the superconduct-
ing condensate.

The VC change the response functions dramatically: the
SC-state spectrum of �bl/bl shown in Fig. 3�c� displays neither
the superconducting condensate nor the pronounced pair-

breaking peak. They are replaced by a broad band centered at
70 meV. The real part of �bl/bl exhibits only two zero cross-
ings �instead of the three occurring in the NV case, the dif-
ference is due to the absence of the condensate�. The one at
lower energies is located in a region of strong absorption. As
a consequence, the SC-state spectrum of �c shown in Fig.
3�d� displays only one pronounced maximum located at the
same energy as that of the NS.

Below we demonstrate that the absence of the condensate
in �bl/bl �VC� is a general consequence of the gauge invari-
ance. The current density in the bilayer region induced by a
homogeneous electric field E oriented along the c-axis can
be expressed employing two different gauges of the electro-
magnetic potentials:

�a� ��=0, Ec= i�Ac. Here Ec is the c-axis component of
E, �� is the scalar-potential difference between the two
planes, and Ac is the c-axis component of the vector poten-
tial;

�b� Ac=0, Ec=−�� /dbl.
Both approaches should lead to the same result. In the

latter case the expression for the conductivity contains only a
regular component proportional to a current-density
correlator.31,35 The conductivity, thus, cannot possess a sin-
gular component corresponding to the condensate. Note that
the above arguments utilizing the two gauges parallel those
used when discussing the response of a homogeneous super-
conductor to a longitudinal probe.

The analogy can be further used to understand the nature
of the peak �mode� at 70 meV in Fig. 3�c�. We recall that in
homogeneous superconductors a longitudinal electromag-
netic field excites the Bogolyubov-Anderson �B. A.� mode
corresponding to density fluctuations of the electron system,
associated with a modulation of the phase of the order
parameter.36,37 The energy of the B. A. mode is proportional
to vF�q�, where vF is the Fermi velocity and q the wave
vector. So far we did not consider the Coulomb interaction
between the carriers that will shift the mode toward higher
frequencies. In a single-layer superconductor �one CuO2
plane per unit cell�, a longitudinal electromagnetic field with
E �c would induce a B. A.-like mode with energy propor-
tional to the Fermi velocity along the c-axis vFz, vFz� t�. In
the present case of the IR response of a bilayer supercon-
ductor the situation is more complicated. The electromag-
netic wave is transverse with q�c. Nevertheless, it induces a
charge density that is modulated along the c axis. The modu-
lation is analogous to the one associated with the B. A. mode
of a single-layer superconductor with q �c, �q�=� /d �d is the
interplane distance�. This is illustrated in Fig. 4. The analogy
allows us to interpret the mode as an analog of the B. A.
mode. This point of view can be substantiated by comparing
the Eqs. �23� and �24� with those describing the longitudinal
response of a single-layer superconductor. For E �c, q �c,
�q�=� /d, and for the Born-Kármán region containing only
two planes �a rather artificial situation�, the latter possess the
same form as the former. Note that the long-wavelength in-
plane modulation of the electromagnetic wave has qualita-
tively no impact on the mode.

Figure 5 shows the t� dependence of the intrabilayer con-
ductivity �bl/bl calculated with �a� the VC neglected and �b�
with the VC included. The frequency of the peak in �a� is
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FIG. 3. �a� Local dielectric function �bl/bl in the simplest BCS
case with t�k�

� =0, t� max=45 meV, and �max=30 meV, vertex cor-
rections are not included �NV�. The thin �thick� lines correspond to
the normal �superconducting� state, T=100 K �T=20 K�. The solid
�dashed� lines represent the imaginary �real� part. �b� The real part
of the corresponding total c-axis conductivity obtained using Eq.
�2�. The thin �thick� line corresponds to the normal �superconduct-
ing� state. ��c� and �d�� The same as in �a� and �b� but with the VC
included �for the superconducting state only�.
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determined by EkA+EkB, which approaches 2� for t�→0.
The energy of the collective mode in �b�, however, does not
depend on �; instead it is proportional to t�. This is consis-
tent with the proposed interpretation of the mode and analo-
gous to the relation ��B.A.��vF�q�.

A further insight into the origin of the collective mode can
be obtained by using arguments inspired by Anderson’s work
on gauge invariance and the Meissner effect.37 Anderson ex-
plains the difference between transverse and longitudinal ex-
citations in terms of the complete second-order phonon-
mediated interaction between electrons. The impact of the
relevant interaction terms on longitudinal and transverse ex-
citations is shown to be fundamentally different. In the lon-

gitudinal case, these terms lead to a restoration of the gauge
invariance, to the absence of the condensate contribution in
the response function, and to the presence of a mode at a
finite frequency proportional to the magnitude of the wave
vector. In the present case, this role is played by the interac-
tion terms involving the products of the form

ckB↑
† c−kA↓

† c−k�A↓ck�B↑ and ckA↑
† c−kB↓

† c−k�B↓ck�A↑. �31�

They do not belong to the reduced BCS Hamiltonian leading
to Eq. �11�. They have, however, a profound impact on the
final states since they provide an attractive interaction be-
tween “elementary excited states,” i.e., the states created by
operators ckA↑

† ckB↑ and ckA↓
† ckB↓, that appear in the expres-

sions for the current-density operators on the right-hand side
of Eq. �12�. The resulting bound state, i.e., the mode behind
the maximum in the spectra, can be thought of as equivalent
to a Cooper bound state of a pair of electrons—one from the
bonding band and the other from the antibonding band—
superimposed on the BCS ground state of the two bands.

It has been shown that the B. A. mode can be associated
with oscillations of the phase of the order parameter. We
have checked that for small values of t� the collective mode
of our bilayer case can be similarly associated with oscilla-
tions of the relative phase of the two planes. The pattern of
the phase modulation is shown in Fig. 4. Finally, the mecha-
nism of the increase in the frequency of the mode when
going from the local conductivity �bl/bl to the total conduc-
tivity, involving the Coulomb interaction of the charged
planes, is an analog of the Anderson-Higgs mechanism.

Next we address the more complicated case of t�� �0,
where the theory involves the four local conductivities de-
fined by Eq. �18�: �bl/bl, �bl/int, �int/bl �that differs from �bl/int
only by a factor of dbl /dint�, and �int/int. Figure 6�a� shows the
real parts of �bl/bl, �bl/int, and �int/int for representative values
of the hopping parameters.

The dashed �solid� lines correspond to the NV approxima-
tion �to the approach with the VC included�. In the NV case,
all the conductivities display a pronounced structure around
100 meV: a maximum in Re �bl/bl and Re �int/int, and a wave-
like feature in Re �bl/int. The VC leads to drastic changes in
Re �bl/bl. The maximum shifts toward lower energies and its
spectral weight �SW� increases on the account of the conden-
sate �not shown�. On the other hand, the structures in
Re �int/int and Re �bl/int remain qualitatively the same and, in
particular, they do not shift toward lower energies.

The difference can be understood using Fig. 7. Part �a�
provides a schematic representation of the Wannier-type or-
bitals of the planes and of the interplane hopping processes.
For t�� � t�, it is useful to consider bonding and antibonding
orbitals of the individual bilayers shown in �b�, �B
= �1 /�2���1+�2�, �A= �1 /�2���1−�2�. The local current
densities and conductivities can be discussed and understood
in terms of the transitions denoted by the arrows. The intra-
bilayer current-density operator is connected with transitions
within individual bilayers, marked by the solid arrows. Note
that these transitions create two quasiparticles from the same
bilayer unit. The interbilayer current-density operator is con-
nected with transitions between adjacent bilayers, marked by
the dashed arrows. These transitions create two quasiparti-
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FIG. 4. �a� Schematic representation of the current-density, den-
sity, and phase pattern associated with the Bogolyubov-Anderson
mode of a single-layer superconductor with q �c, �q�=� /d. �b� The
same for the collective mode of the bilayer system discussed in the
text.
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cles from different units. The important point is that the final
states due to the former �latter� transitions are strongly
�weakly� modified by the VC because the interactions are
restricted to individual bilayers. This is the reason why �bl/bl
�determined by the matrix element of Eq. �20� involving
states generated by ĵbl

p , i.e., by the former transitions� is
strongly influenced by the VC, whereas �int/int �determined
by the matrix element of Eq. �20� involving states generated

by ĵint
p , i.e., by the latter transitions� hardly changes. The

changes in �bl/int are more complex because different final
states are involved: one due to the former transitions and the
other due to the latter transitions.

The t� dependencies of Re �bl/bl and Re �int/int are con-
trasted in Fig. 8. It can be seen that the VC cause qualitative
changes in Re �bl/bl, in particular, they lead to the linear t�

dependence of the frequency of the maximum. The spectra of
Re �int/int, on the other hand, do not change qualitatively,
except for the very small values of t�, where the B. A.-like
mode appears even in the interlayer conductivity.

The structures of the conductivities �int/int and �bl/int give
rise—via the multilayer formula—to a maximum in the spec-
tra of Re �c as shown in part �b� of Fig. 6. It can be seen that
the magnitude of the peak is proportional to t��

2. The maxi-
mum of Re �int/int and the related peak of Re �c can be in-
terpreted simply as an interband bonding-antibonding pair-
breaking �coherence� peak, with the coherence factor
proportional to the magnitude of the band splitting. We recall
that in one-band superconductors, the conductivity does not
exhibit any coherence peak around 2� due to the fact that
electromagnetic absorption belongs to phenomena governed
by case II coherence factors.31,38 Here the situation is differ-
ent because of the presence of the two bands.
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B. Quasiparticles coupled to spin fluctuations

Here we discuss the c-axis response obtained by the self-
consistent computations within the spin-fermion model. As
in Sec. III A, we begin with the simpler case of t�� =0. Inter-
estingly, the VC plays an important role even in the normal
state, an effect that was not addressed at the BCS level. In
particular, for the NS local conductivity calculated with the
VC neglected, the restricted conductivity sum rule

Io =
2�2

�e2
0+

�

Re �bl���d� = − Kbl �32�

is strongly �by tens of percent� violated. This is demonstrated
in Fig. 9. It can be seen that the deficiency is more serious
for smaller values of the band splitting. With the VC in-
cluded, the sum rule is satisfied. Let us note that the corre-
sponding violation of the in-plane sum rule is an order of
magnitude weaker.22

Changes in �bl/bl caused by the incorporation of the VC
are so pronounced that there is not much similarity between
the NV and the VC spectra �see Fig. 10�. The NS spectra for
the NV case shown in �a� display a broad low-energy absorp-
tion band corresponding to bonding-antibonding interband
transitions, which can be compared with the sharp absorption
structure of the NS spectra of the BCS case. The broadening
with respect to the BCS case is due first to the finite lifetime
of the quasiparticles and second to the presence of a pro-
nounced incoherent background of the spectral function. The
VC shift the absorption band toward higher energies �see
part �b��. This can be understood in terms of the complete
second-order spin-fluctuation-mediated interaction between
the electrons: the relevant terms can be shown to correspond
to a repulsive coupling of the excited states with one electron
in the antibonding band and one hole in the bonding band. In

the total c-axis conductivity shown in Fig. 10�e� the band is
shifted even further and it is very broad.

The spectra of the SC state for the NV case as shown in
Fig. 10�c� display a pair-breaking peak at about 2�, corre-
sponding to a similar feature of the BCS case, and a con-
tinuum with an onset around 80 meV. In addition, Re �bl/bl
also contains the contribution of the condensate ����� �not
shown�. The VC transforms the spectra in a similar way as in
the nonretarded case �see part �d��. They destroy the conden-
sate and the pair-breaking peak; instead, a sharp maximum
�mode� appears, whose energy is proportional to t�. As dis-
cussed in Sec. III A, the mode can be interpreted as an ana-
log of the B. A. mode. In the following we shall call it
simply B. A. mode. In the total c-axis conductivity, see Fig.
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FIG. 10. Effect of the vertex corrections on the conductivities.
Real parts of ��a�–�d�� the local conductivity �bl/bl and of ��e�-�f��
the total c-axis conductivity calculated within the spin-fermion
model. The spacing layers have been taken to be insulating, i.e.,
t� max� =0 and the neutron resonance has been included in the odd-
interaction channel only. Results for several values of the hopping
parameter t� max are presented. The spectra in �a� and �c� ��b�, �d�,
�e�, and �f�� have been obtained for the NV �VC� case. The thin line
in �f� represents the estimated energy dependence of the spectral
weight of the peak labeled as T1. For t� max=30 meV �45 meV, 60
meV�, the estimated value of the spectral weight is 4000  −1 cm−2

�4600  −1 cm−2 ,2300  −1 cm−2�.
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10�f�, the mode is shifted toward higher energies by virtue of
the Coulomb effects associated with the charging of the
planes, the corresponding peak will be labeled as T1. Let us
emphasize that the sharp peak shows up only in the super-
conducting state, the presence of a narrow mode in SF is not
a sufficient condition for its appearance.

In the remaining part of this subsection, we address the
case of nonzero t�� . Similarly as in the BCS case, the impact
of the VC on �bl/bl is much stronger than that on the other
local conductivities. This is illustrated in part �a� of Fig. 11.
The NV spectra of Re �bl/bl exhibit a pair-breaking peak at
about 2�, similar as in Fig. 10�c�. The VC destroys the peak
and leads to the formation of the B. A. mode. For the present
value of t� of 150 meV, the mode is located in the region of
the continuum �cf. Fig. 10�d�� and, thus, only gives rise to a
weak structure around 100 meV. The interbilayer conductiv-
ity �int/int, on the other hand, is almost unaffected by the VC,
retaining the characteristic maximum at about 2� �labeled as
2� maximum in the following�. The t� dependencies of the
energies of the B. A. mode and of the 2� peak in the local
conductivity are shown in Fig. 12�a�. The energy of the B. A.
mode can be seen to be proportional to t�, except for the
region of high values of t�; that of the 2� peak is approxi-
mately t� independent.

The 2� maximum appears also in the total c-axis conduc-
tivity, as shown in Fig. 11�b�. The spectral weight of the
corresponding peak �labeled as T2 in the following� is pro-
portional to t��

2. As documented in Fig. 12�b�, for low values

of t�, T1 dominates and T2 cannot be resolved. For high
values of t�, on the other hand, T2 is the most pronounced
feature since the B. A. mode merges with the continuum and
T1 can hardly be resolved. Both features can be seen for
intermediate values of t�, e.g., t�=70 meV. The t� depen-
dencies of the energies of the structures T1 and T2 in the total
c-axis conductivity are given in Fig. 12�a�.

C. Comparison with experiment and with the theory proposed
by Shah and Millis

The c-axis conductivity displays two superconductivity-
induced structures �modes�: P1 and P2 in the experimental
data, and T1 and T2 in the theoretical spectra. In what fol-
lows, we argue that the features P1 and P2 can be attributed
to T1 and T2, respectively.

First, we summarize the relevant trends of the structures
P1 and P2 as observed in the experimental data of bilayer
compounds, in particular Y-123 and related systems. Some of
the trends are demonstrated in Fig. 13.

�E1� The frequency of P1 increases with increasing hole
concentration p.1,2,5,11,12,20,21,40,41

�E2� The SW of P1 first increases with increasing p, then
saturates for p�0.12, and for higher values of p, P1 broad-
ens and its SW gradually decreases; for p�0.15, P1 cannot
be resolved anymore.20
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conductivity for values of t� max, where both structures T1 and T2

are visible. As t� max decreases, the peak T1 emerges from the back-
ground at t� max�100 meV, and it quickly becomes the dominant
feature. Eventually, it covers the T2 peak at t� max�50 meV.
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�E3� The frequency of P1 decreases when going—for a
fixed doping level—from Y-123 over Nd-123 to La-123.20 In
this sequence of materials, the distance between the closely
spaced planes increases.

�E4� In the YPr-123 system, the doping level can be
modified either by changing the oxygen concentration or by
partially replacing Y with Pr. The replacement leads to a
decrease in p. By combining the two approaches, it is pos-
sible to obtain various combinations of p and the NS dc
conductivity along the c axis, �dc. For a fixed doping, there is
no pronounced correlation between the SW of P1 and
�dc.

21,42

�E5� The structure P2 can be resolved only for p!0.10.20

�E6� The frequency of P2 slowly decreases with increas-
ing p.20

�E7� The SW of P2 increases with increasing p.20

�E8� In the YCa-123 system, it is possible, similarly as in
the case of YPr-123, to obtain various combinations of p and
�dc. For a fixed doping, the SW of P2 increases with increas-
ing �dc, see Fig. 13.

The distance between the closely spaced planes can be
expected to be correlated with the strength of the intrabilayer
electronic coupling. The observation �E3�, thus, suggests a
relation between P1 and the coupling. Further, the dc con-

ductivity is likely to reflect the strength of the coupling
through the spacing layer. The observations �E4� and �E8�,
thus, seem to imply an independence of P1 and a dependence
of P2 on this coupling.

Second, we review the corresponding properties of T1 and
T2 resulting from our computations. The labels �T1�–�T8� are
parallel those used in the summary of experimental facts.

�T1� The energy of T1 increases with increasing t� �see
Figs. 5 and 10�.

�T2� The SW of T1 first increases with increasing t�, then
saturates for t��50 meV, and for higher values of t�, T1
broadens and gradually vanishes �see Fig. 10�f��. The broad-
ening is due to the fact that T1 reaches the continuum.

�T4� For a given t�, T1 does not change significantly with
increasing t�� �not shown�. Note that t�� determines �dc:�dc is
approximately proportional to t��

2.
�T6� The energy of T2 is approximately equal to 2� for

low values of t� and somewhat larger than 2� for higher
values of t� of the order of 100 meV �see Fig. 12�a��.

�T7� The SW of T2 increases with increasing t� �not
shown�.

�T8� The SW of T2 also increases with increasing t�� �see
Fig. 11�. For a given t�, the SW of T2 is approximately
proportional to t��

2, similarly as �dc.
A comparison between the items �E1�–�E4� and �T1�–�T4�

suggests that P1 could be attributed to T1 provided that t�

increases with increasing p. This crucial assumption is con-
sistent with results obtained using the bilayer t−J model and
the Gutzwiller approximation.43,44 Alternatively, it can also
be justified considering a PG competing with superconduc-
tivity and the reported p and k dependencies of the magni-
tude of the PG and of the coherence peaks due to
superconductivity.45,46 With decreasing p, the magnitude of
the PG increases and the area of the part of the Brillouin
zone dominated by the PG, centered around the antinode,
expands. At the same time, the area of the part with pro-
nounced Bogolyubov quasiparticles shrinks toward the BZ
diagonal. The important point is that at the BZ diagonal, t� is
probably the smallest.9 The shrinkage of the area of strong
superconducting correlations might, thus, lead to a decrease
in an effective t� determining the energy of the low-energy
mode.

The properties �E5�–�E8� are in agreement with attribut-
ing P2 to T2: The items �E5� and �E7� can be understood in
terms of �T7� and �T8�, when combined with the assumption
of t�� p and with the obvious fact that t�� increases with
increasing oxygen concentration; �E6� is consistent with
�T6�, when combined with the experimental fact that around
optimum doping, � decreases with increasing p. Further,
�E8� can be understood based on �T8�.

An obvious problem of the proposed assignment of T1 to
P1 and T2 to P2 is that ��T1����T2� for the relevant range
of parameters �see Fig. 12�, whereas for underdoped materi-
als with 0.10"p"0.15 the frequency of P1 is lower than
that of P2.20 The reason for this discrepancy is probably the
following: Experimentally, ��P2��100 meV which requires
��50 meV, and such a high value cannot be achieved us-
ing the present self-consistent theory with reasonable values
of input parameters. The effective gap may have a contribu-
tion due to the pseudogap, which is not included in the
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FIG. 13. �a� Doping dependence of the difference Re �c�T
�Tc�−Re �c�T�Tc� for Y-123. The abbreviations UD, OPT, and
OD stand for underdoped, optimum doped, and overdoped. The
values of p are 0.093, 0.116, 0.124, 0.155, and 0.194. Also shown
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tails concerning the samples and the experiment are given in Refs.
20 and 39. �b� The spectra of the difference for the sequence R-123
�R=Y, Nd, and La� with p�0.12. In this sequence, the distance
between the CuO2 planes within a bilayer increases. The inset
shows the original spectra for Nd-123. Adapted from Fig. 2 of Ref.
20.
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present theory. Within the BCS approach, � is an input pa-
rameter. Unfortunately, the resulting spectra of �c for the
interesting region of the parameter space ��� t�� contain
overlapping resonances that cannot be easily disentangled.
The complication is due to the absence of an incoherent
background in the local conductivities. Motivated by this ob-
servation, we have supplemented the component �bl/bl with a
broad Lorentzian, −iA / ��L

2 −�2− i��L�, �L=0.4 eV, �L
=0.15 eV, and A� t�

2 . The t� dependence of the spectral-
weight parameter A is consistent with Eq. �21�. The results
are shown in Fig. 14. It can be seen that the t� dependence of
the total conductivity shown in �b� resembles the doping de-
pendence of the data,20 including the interplay of T1 and T2:
For low values of t�, the spectra are dominated by T1; for
intermediate values of 20–30 meV, both spectral structures
are present, and with increasing t�, T1 gradually hides in the
continuum.

The discrepancy in the order of the spectral structures
does not occur for optimally doped and overdoped Y-123
samples, where P1 is buried in the continuum part of the
spectra located above the maximum P2. The experimental
spectra �see, e.g., Fig. 1 of Ref. 12� are similar to the calcu-
lated ones corresponding to the values of t� of a few hun-
dreds of meV. As an example, we show in Fig. 15�a� the NS
and SC-state spectra of Re �c corresponding to t� max
=250 meV and t� max� =0.3t� max. The maximum T2 at about
70 meV �600 cm−1� probably corresponds to P2 occurring at
a slightly higher frequency in the experimental spectra.

Next we compare our calculated spectra of Re �c with the
conductivities of a related single-layer superconductor and
with those computed along the lines of the theory proposed
by Shah and Millis �SM�.14 Figure 15�a� shows, besides the
spectra of Re �c�t� max=250 meV, t� max=75 meV� dis-
cussed above, those corresponding to t� max=30 meV and
t� max=0 meV. The former �the latter� represent the case of
strong �weak� intrabilayer coupling. The corresponding
renormalized values of the �normal-state� bilayer splitting are
ca 80 and 10 meV. Note that the former value is close to that
of Bi-2212 as obtained by photoemission experiments.16–19

As discussed in the context of Figs. 11 and 12 only one peak
is present in the superconducting state spectra: T2 in the
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with the spectra of the same quantity obtained using the approxi-
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conductivity calculated using the spin-fermion model with t� max
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former case and T1 in the latter. It is instructive to compare
the SC-state conductivities with the solid line of Fig. 15�b�
representing the c-axis conductivity of a model single-layer
superconductor described in the caption. This allows one to
identify the features specific to the bilayer compounds: �i�
the peak T1 �for small values of t��, �ii� the peak T2 �for large
values of t� and t�� �0�, and �iii� a hump in the midinfrared
�for large values of t��. For t� max=250 meV, the hump is
centered at 500 meV. It has the same origin as the 160 meV
maximum in Fig. 3 and it can be attributed to the �upper�
plasma mode of the bilayer unit �see the discussion following
Eq. �30��. Both T1 and T2 would appear for intermediate
values of t�, as discussed in the context of Figs. 12 and 14.
The broad band centered around 120 meV in Fig. 15�a� ap-
pears also in the conductivity of the single-layer supercon-
ductor and is, thus, not specific to the bilayer compounds.

Also shown in Fig. 15�b� is the in-plane conductivity of
the single-layer superconductor. It can be seen that the
shapes of the two conductivities are fairly similar. The main
differences are: �a� for T=20 K, a narrow Drude term can be
resolved only in Re �ab, and �b� the onset of Re �c is more
gradual than that of Re �ab. Both �a� and �b� are due to the
difference between the matrix element of �ab, i.e., the in-
plane quasiparticle velocity, and t�. Both �ab and �c exhibit
a maximum around 110 meV and both decrease with increas-
ing energy above this maximum. The origin of the maximum
has been addressed in Refs. 22 and 32. The calculated c-axis
conductivity of the single-layer superconductor is qualita-
tively similar to the measured conductivity of La2−xSrxCuO4
reported in Ref. 47.

Figure 15�c� shows the c-axis conductivities of the same
bilayer systems as in �a�, but calculated using the approach
proposed by SM, where the nondiagonal components of the
conductivity �bl/int and �int/bl are neglected, and the diagonal
component �bl/bl��int/int� is approximated by the conductivity
of the single-layer superconductor with the hopping param-
eter equal to t��t�� �. When calculating the latter conductivi-
ties, SM further replace the kz-dependent Green’s function
with a kz-independent one of a two-dimensional model. In-
stead of using this approximation, we have obtained the con-
ductivities of the model single-layer superconductors by
scaling the one shown in Fig. 15�b�. We have checked that
for the present values of the parameters, the results of the
two approaches are almost the same. By comparing panels
�a� and �c� of Fig. 15, we easily identify differences between
the SM theory that does not involve the bilayer splitting and
our improved approach that does. For small values of t�, the
SM theory provides a peak inside the gap, corresponding to a
bilayer plasmon, similar to the transverse Josephson plasmon
of the phenomenological model.13 The T1 peak of our theory
is located at a slightly higher energy and its interpretation is
different. What it has in common with the transverse Joseph-
son plasmon is that both are associated with oscillations of
the relative phase of the two closely spaced planes. For high
values of t�, our approach yields the pair-breaking peak T2
absent at the SM level. At high energies �above 100 meV�,
the results of the two approaches are similar.

Interestingly, the NS spectra corresponding to t� max
=250 meV shown in Fig. 15�a� do not display any clear
signature of the bilayer splitting, consistent with experimen-

tal data. The contribution of the bonding-antibonding transi-
tions is hidden in the midinfrared region. This is because the
renormalization of the quasiparticles leads to a very broad
absorption band �see Fig. 10�a�� shifted toward the midinfra-
red both by the vertex corrections and by the Coulomb ef-
fects �see Figs. 10�b� and 10�e��.

Experiments reveal an increase in the optical spectral
weight in the far-infrared below Tc, with a possible interpre-
tation in terms of a decrease in the c-axis kinetic energy
associated with the superconducting transition.48 The picture
resulting from our calculations, restricted to the case of small
values of t� max and t� max� =0, is the following: Below Tc, the
peak T1 forms, gaining spectral weight from a broad interval
of energies, and the spectral weight at low energies increases.
The total spectral weight, proportional to the negatively
taken effective kinetic energy Kbl, decreases, provided that
SF �below Tc� =SF �above Tc�. However, changes in SF
upon entering the superconducting state, in particular the for-
mation of the resonance mode, can lead to a slight increase
in the total spectral weight and the corresponding decrease in
Kbl, the mechanism being connected to that outlined in Ref.
49. The issue is fairly complex and will be addressed in a
separate publication.

IV. SUMMARY AND CONCLUSIONS

We have constructed a realistic microscopic model of the
c-axis infrared response of bilayer cuprate superconductors,
allowing us to interpret the superconductivity-induced modes
occurring in the experimental data.

For the simpler case of insulating spacing layers, the local
conductivity of the intrabilayer region does not possess a
condensate contribution in the superconducting state ����� in
Re �� as assumed within the phenomenological Josephson
superlattice model. Instead, it displays a collective mode at a
finite frequency that is proportional to the interplane hopping
amplitude t�. This has been shown to be a consequence of
the gauge invariance. The nature of the mode is similar to
that of the Bogolyubov-Anderson mode that participates in
the longitudinal response of a homogeneous superconductor.
It is associated with charge oscillations between the planes
and, for small values of t�, also with oscillations of the rela-
tive phase of the two planes. This physical picture is fairly
similar to that of the transverse plasmon of the Josephson
superlattice model. In the total c-axis conductivity the mode
is shifted toward higher energies by the interplane Coulomb
interaction.

A nonzero amplitude of the hopping through the spacing
layer implies a finite conductivity of this layer. This local
conductivity exhibits a peak at a frequency slightly higher
than 2�max, which can be interpreted as a pair-breaking peak.
The simple picture is such that two Bogolyubov quasiparti-
cles are involved: one from the bonding band and the other
from the antibonding. The reason why the peak appears in
the interbilayer conductivity and not in the intrabilayer one is
the following. Excited states behind the former �latter� con-
ductivity involve quasiparticles from different bilayers �from
the same bilayer�. Only the latter are, thus, strongly modified
by including the final-state interactions, which are restricted
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to individual bilayers. The peak permeates into the total
c-axis conductivity.

A series of arguments has been presented assigning the
collective mode to the low-energy superconductivity-induced
mode of the experimental data �interpreted previously in
terms of the Josephson superlattice model� and the pair-
breaking maximum to the superconductivity-induced peak
centered around 1000 cm−1. The arguments concern the dop-
ing dependence of the frequencies and the spectral weights
of the peaks and the impact of various substitutions. A cru-
cial assumption, connecting the theory and the experiment, is
that the effective t� decreases with decreasing doping. The
trends of the underdoped regime, in particular, the appear-
ance of the collective mode below Tc, the increase in its
frequency with increasing doping, and its disappearance be-
low optimum doping can all be reasonably reproduced and
understood using this assumption. Admittedly, the values of
t� of a few tens of meV needed to fit the data are smaller
than those deduced from photoemission experiments. The
main features of the data of optimally doped Y-123 can be
reasonably reproduced with t� max of 250 meV, which corre-
sponds to the maximum distance between the renormalized
bands of ca 80 meV.
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APPENDIX: BCS LEVEL OF THE THEORY

In this appendix, we show several results obtained at the
BCS level, where extensive analytical simplifications can be
made. For the sake of brevity, we restrict ourselves to the
case of t�k�

� =0. We employ the BCS interaction of d-wave
symmetry which acts in the individual CuO2 planes �labeled
as 1 and 2� within a bilayer unit. The corresponding Hamil-
tonian reads

ĤBCS = �
k�
�BkcBk�

† cBk� + �
k�
�AkcAk�

† cAk�

+ �
kk�,n��1,2�

2Vkk�cnk↑
† cn,−k↓

† cn,−k�↓cnk�↑, �A1�

where Vkk� is introduced in the main text. The factor of 2 is
for later convenience. The interaction term can be written as

�
kk�

Vkk��BBBB + BBAA + AABB + AAAA + BABA + BAAB

+ ABAB + ABBA� , �A2�

where BBBB, e.g., stands for cBk↑
† cB,−k↓

† cB,−k�↓cBk�↑. The first

four terms in Eq. �A2� provide the pairing interactions, the
other four terms play an important role in the vertex correc-
tions. The above pairing interaction is equally distributed
among the two symmetry channels and produces the same
gap in both bands, hence, �A/B�k�=−�k�1 with �k deter-
mined by Eq. �11�.

Because the self-energy depends on k only, we can sum
over the Matsubara frequencies explicitly. The evaluation of
the NV response function given by Eq. �21� leads to

�bl−bl
NV�1��q = 0,���

= −
e2

�2

dbl

Na2�
k

t�k
2

� �l1�1 − nF�EAk� − nF�EBk��

�� 1

�� + Ek
+ + i�

−
1

�� − Ek
+ + i�

�
+ l2�nF�EAk� − nF�EBk��

�� 1

�� + Ek
− + i�

−
1

�� − Ek
− + i�

�� , �A3�

where Ek
�=EAk�EBk and l1/2 are the coherence factors

l1/2 =
�Ak�Bk + �Ak�Bk

EAkEBk

 1. �A4�

Note that in the limit of t�k→0, the factors l1 as well as
nF�EAk�−nF�EBk� vanish and �bl−bl becomes zero. For the
same reason, there is no intraband contribution �Eq. �22�� in
the BCS case.

The renormalized vertices �AB and �BA satisfy the Bethe-
Salpeter equations similar to Eq. �24�, now containing the
BCS interaction

�AB�k,iE,i��� = t�k�0 −
kBT

N
�

k�,iE�

Vkk�

� �3�GB�k�,iE���AB�k�,iE�,i���

�GA�k�,iE� + i���

+ GA�k�,iE���BA�k�,iE�,i���

�GB�k�,iE� + i�����3. �A5�

Since the usual BCS interaction couples with �3, not with �0
like the spin fluctuations, the above equation contains the
additional matrices �3. The corresponding equation for the
vertex �BA differs from Eq. �A5� in the sign of the t�k�0 term
only. By inserting the form of Vkk� explicitly, one finds that
the vertices can be cast to: �AB�k , i���= t�k�0+�wkC�i���
and �BA�k , i���=−t�k�0+�wkC�i���. The quantity C�i��� is
a 2�2 matrix, independent of iE because of the nonretarded
BCS interaction and independent of k because of the sepa-
rable form of Vkk�. We express it as a linear combination of
the Pauli matrices: C�i���=��=0

3 ��C��i���. The Bethe-
Salpeter Eq. �A5� can be then converted to a linear system of
equations for the coefficients C��i���,
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#�C��i��� − �
�

$���i���C��i��� =%�0�i��� , �A6�

�,� = 0,1,2,3

with #�= +1��=0,3� and #�=−1��=1,2�. The coefficients
of the system are given by

�
�

��%�� = �
kBT

N �
k,iE

wkt�k�GB�k,iE���GA�k,iE + i���

− GA�k,iE���GB�k,iE + i���� �A7�

and

�
�

��$�� = �
kBT

N �
k,iE

wk
2�GB�k,iE���GA�k,iE + i���

+ GA�k,iE���GB�k,iE + i���� . �A8�

Finally, to get the response function, we insert the
renormalized vertices into Eq. �23� and with the help of
Tr ��=2��0 obtain

�bl−bl
VC =�bl−bl

NV −
2e2dbl

�2a2 �
�

%0�C�. �A9�

All the above equations can be analytically continued to the
real axis explicitly. For each frequency required, we have to
evaluate the coefficients %�� and $��, solve linear system
�A6� and find response function �A9�. Thanks to the simple
form of the self-energy, the Matsubara summations can be
again performed analytically, as in Eq. �A3�, but lead to more
cumbersome expressions due to the additional �� matrix in
Eqs. �A7� and �A8�.
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