1,075 research outputs found

    Multi-Modal Human-Machine Communication for Instructing Robot Grasping Tasks

    Full text link
    A major challenge for the realization of intelligent robots is to supply them with cognitive abilities in order to allow ordinary users to program them easily and intuitively. One way of such programming is teaching work tasks by interactive demonstration. To make this effective and convenient for the user, the machine must be capable to establish a common focus of attention and be able to use and integrate spoken instructions, visual perceptions, and non-verbal clues like gestural commands. We report progress in building a hybrid architecture that combines statistical methods, neural networks, and finite state machines into an integrated system for instructing grasping tasks by man-machine interaction. The system combines the GRAVIS-robot for visual attention and gestural instruction with an intelligent interface for speech recognition and linguistic interpretation, and an modality fusion module to allow multi-modal task-oriented man-machine communication with respect to dextrous robot manipulation of objects.Comment: 7 pages, 8 figure

    Sufficient second-order conditions for bang-bang control problems

    Get PDF
    We provide sufficient optimality conditions for optimal control problems with bang-bang controls. Building on a structural assumption on the adjoint state, we additionally need a weak second-order condition. This second-order condition is formulated with functions from an extended critical cone, and it is equivalent to a formulation posed on measures supported on the set where the adjoint state vanishes. If our sufficient optimality condition is satisfied, we obtain a local quadratic growth condition in L1(Ω)The first author was partially supported by the Spanish Ministerio de Economía y Competitividad under project MTM2014-57531-P. The second author was partially supported by the DFG under grant Wa 3626/1-1

    Cosmic multi-muon events observed in the underground CERN-LEP tunnel with the ALEPH experiment

    Get PDF
    Multimuon events have been recorded with the ALEPH-detector, located 140 m underground, in parallel with e+^+e^- data taking. Benefitting from the high spatial and momentum resolution of the ALEPH tracking chambers narrowly spaced muons in high multiplicity bundles could be analysed. The bulk of the data can be successfully described by standard production phenomena. The multiplicity distribution favors, though not with very high significance, a chemical composition which changes from light to heavier elements with increasing energy around the ``knee". The five highest multiplicity events, with up to 150 muons within an area of \sim 8 m2^2, occur with a frequency which is almost an order of magnitude above the simulation. To establish a possible effect, more of these events should be recorded with a larger area detector

    Spectrum and Charge Ratio of Vertical Cosmic Ray Muons up to Momenta of 2.5 TeV/c

    Get PDF
    The ALEPH detector at LEP has been used to measure the momentum spectrum and charge ratio of vertical cosmic ray muons underground. The sea-level cosmic ray muon spectrum for momenta up to 2.5 TeV/c has been obtained by correcting for the overburden of 320 meter water equivalent (mwe). The results are compared with Monte Carlo models for air shower development in the atmosphere. From the analysis of the spectrum the total flux and the spectral index of the cosmic ray primaries is inferred. The charge ratio suggests a dominantly light composition of cosmic ray primaries with energies up to 10^15 eV

    The UK and German low-carbon industry transitions from a sectoral innovation and system failures perspective

    Get PDF
    Industrial processes are associated with high amounts of energy consumed and greenhouse gases emitted, stressing the urgent need for low-carbon sectoral transitions. This research reviews the energy-intensive iron and steel, cement and chemicals industries of Germany and the United Kingdom, two major emitting countries with significant activity, yet with different recent orientation. Our socio-technical analysis, based on the Sectoral Innovation Systems and the Systems Failure framework, aims to capture existing and potential drivers of or barriers to diffusion of sustainable industrial technologies and extract implications for policy. Results indicate that actor structures and inconsistent policies have limited low-carbon innovation. A critical factor for the successful decarbonisation of German industry lies in overcoming lobbying and resistance to technological innovation caused by strong networks. By contrast, a key to UK industrial decarbonisation is to drive innovation and investment in the context of an industry in decline and in light of Brexit-related uncertainty

    PT-symmetric models in curved manifolds

    Full text link
    We consider the Laplace-Beltrami operator in tubular neighbourhoods of curves on two-dimensional Riemannian manifolds, subject to non-Hermitian parity and time preserving boundary conditions. We are interested in the interplay between the geometry and spectrum. After introducing a suitable Hilbert space framework in the general situation, which enables us to realize the Laplace-Beltrami operator as an m-sectorial operator, we focus on solvable models defined on manifolds of constant curvature. In some situations, notably for non-Hermitian Robin-type boundary conditions, we are able to prove either the reality of the spectrum or the existence of complex conjugate pairs of eigenvalues, and establish similarity of the non-Hermitian m-sectorial operators to normal or self-adjoint operators. The study is illustrated by numerical computations.Comment: 37 pages, PDFLaTeX with 11 figure

    Analytical, Optimal, and Sparse Optimal Control of Traveling Wave Solutions to Reaction-Diffusion Systems

    Full text link
    This work deals with the position control of selected patterns in reaction-diffusion systems. Exemplarily, the Schl\"{o}gl and FitzHugh-Nagumo model are discussed using three different approaches. First, an analytical solution is proposed. Second, the standard optimal control procedure is applied. The third approach extends standard optimal control to so-called sparse optimal control that results in very localized control signals and allows the analysis of second order optimality conditions.Comment: 22 pages, 3 figures, 2 table

    Geometry-controlled kinetics

    Full text link
    It has long been appreciated that transport properties can control reaction kinetics. This effect can be characterized by the time it takes a diffusing molecule to reach a target -- the first-passage time (FPT). Although essential to quantify the kinetics of reactions on all time scales, determining the FPT distribution was deemed so far intractable. Here, we calculate analytically this FPT distribution and show that transport processes as various as regular diffusion, anomalous diffusion, diffusion in disordered media and in fractals fall into the same universality classes. Beyond this theoretical aspect, this result changes the views on standard reaction kinetics. More precisely, we argue that geometry can become a key parameter so far ignored in this context, and introduce the concept of "geometry-controlled kinetics". These findings could help understand the crucial role of spatial organization of genes in transcription kinetics, and more generally the impact of geometry on diffusion-limited reactions.Comment: Submitted versio

    Characterization of Liposomes for Cancer Cell Transfection

    Get PDF
    We have characterized a broad range of liposome formulations with varying DcChol:DOPE ratio. Subsequent addition of DcChol to liposomes increases its positive surface charge. However, loading the nuclear acids did not neutralize the overall negative surface potential to a similar extent. The liposomes were tested by transfection of DNA in living cancer cells
    corecore