791 research outputs found

    Estimating the 3D fold structure of the crust-mantel boundary

    Get PDF
    Deep-seated lithospheric folding can be revealed using a method that combines gravity inversion calculations and isostatic analyses.The determination of the crustal structure is essential in geophysics, as it gives insight into the geohistory, tectonic environment, geohazard mitigation, etc. Here we present the latest advance on three-dimensional modeling representing the Tibetan Mohorovi\u10di\u107 discontinuity (topography and ranges) and its deformation (fold), revealed by analyzing gravity data from GOCE mission

    Moho topography, ranges and folds of Tibet by analysis of global gravity models and GOCE data

    Get PDF
    The determination of the crustal structure is essential in geophysics, as it gives insight into the geohistory, tectonic environment, geohazard mitigation, etc. Here we present the latest advance on three-dimensional modeling representing the Tibetan Mohorovi\u10di\u107 discontinuity (topography and ranges) and its deformation (fold), revealed by analyzing gravity data from GOCE mission. Our study shows noticeable advances in estimated Tibetan Moho model which is superior to the results using the earlier gravity models prior to GOCE. The higher quality gravity field of GOCE is reflected in the Moho solution: we find that the Moho is deeper than 65 km, which is twice the normal continental crust beneath most of the Qinghai-Tibetan plateau, while the deepest Moho, up to 82 km, is located in western Tibet. The amplitude of the Moho fold is estimated to be ranging from 129 km to 9 km with a standard deviation of ~2 km. The improved GOCE gravity derived Moho signals reveal a clear directionality of the Moho ranges and Moho fold structure, orthogonal to deformation rates observed by GPS. This geophysical feature, clearly more evident than the ones estimated using earlier gravity models, reveals that it is the result of the large compressional tectonic process

    Implementing Model-Based Variable-Structure Controllers For Robot Manipulators With Actuator Modelling

    Get PDF
    A model-based control scheme for robot manipulators employing a variable structure control law has previously been found to perform well parameters are carefully chosen model of this original scheme which the actuator dynamics is taken into consider The practical experiments are carried out on a commerci revolute-joint robot manipulator

    Decoupled Lithospheric Folding, Lower Crustal Flow Channels, and the Growth of Tibetan Plateau

    Get PDF
    The growth mechanism of the Tibetan Plateau, postulated by a number of hypotheses, remains under intense debate. Our analysis of recent satellite-based gravity model reveals that Tibetan lithosphere has been decoupled and folded. It is further evidenced by the existence of crustal melts and channel flow that have been observed by seismic and magnetotelluric explorations. Based on 3D geodynamic simulations, we elucidate the exact buckling structures in the upper crust and lithospheric mantle: at mixed wavelengths between ∼240 and ∼400 km, the lower crustal viscosity is smaller than ∼10 19 Pa·s, implicating weak lower crustal flow beneath the Plateau. This mixed wavelength is consistent with the result of our inverse gravity modeling. Our results facilitate a new plausible hypothesis that the decoupled lithospheric folding mechanism can explain the growth mechanism of the anomalously thick and wide Tibetan Plateau by conflating our idea and contemporary hypothesized scientific findings

    Survey propagation at finite temperature: application to a Sourlas code as a toy model

    Full text link
    In this paper we investigate a finite temperature generalization of survey propagation, by applying it to the problem of finite temperature decoding of a biased finite connectivity Sourlas code for temperatures lower than the Nishimori temperature. We observe that the result is a shift of the location of the dynamical critical channel noise to larger values than the corresponding dynamical transition for belief propagation, as suggested recently by Migliorini and Saad for LDPC codes. We show how the finite temperature 1-RSB SP gives accurate results in the regime where competing approaches fail to converge or fail to recover the retrieval state

    An experimental study investigating the effect of pain relief from oral analgesia on lumbar range of motion, velocity, acceleration and movement irregularity

    Get PDF
    Background Movement alterations are often reported in individuals with back pain. However the mechanisms behind these movement alterations are not well understood. A commonly cited mechanism is pain. The aim of this study was to investigate the effect of pain reduction, from oral analgesia, on lumbar kinematics in individuals with acute and chronic low back pain. Methods A prospective, cross-sectional, experimental repeated-measures design was used. Twenty acute and 20 chronic individuals with low back pain were recruited from General Practitioner and self-referrals to therapy departments for low back pain. Participants complained of movement evoked low back pain. Inertial sensors were attached to the sacrum and lumbar spine and used to measure kinematics. Kinematic variables measured were range of motion, angular velocity and angular acceleration as well as a determining movement irregularity (a measure of deviation from smooth motion). Kinematics were investigated before and after administration of oral analgesia to instigate pain reduction. Results Pain was significantly reduced following oral analgesia. There were no significant effects on the kinematic variables before and after pain reduction from oral analgesia. There was no interaction between the variables group (acute and chronic) and time (pre and post pain reduction). Conclusion The results demonstrate that pain reduction did not alter lumbar range of motion, angular velocity, angular acceleration or movement irregularity questioning the role of pain in lumbar kinematics

    Rap1 deficiency-provoked paracrine dysfunction impairs immunosuppressive potency of mesenchymal stem cells in allograft rejection of heart transplantation

    Get PDF
    Immunomodulatory activity of mesenchymal stem cells (MSCs) is largely mediated by paracrine factors. Our previous studies showed that activation of nuclear factor-kappa B (NF-κB) regulates cytokine/growth factor secretion by MSCs. This study aimed to elucidate the role of Rap1 (repressor/activator protein), a novel modulator involved in the NF-κB pathway, in regulating the immunomodulatory potency of MSCs in acute allograft rejection of heart transplantation. The immunosuppressive potency of wild-type MSCs (WT-MSCs) or Rap1-deficient MSCs (Rap1-/--MSCs) was examined in mice with acute allograft rejection following heart transplantation. With a combination of immunosuppressant rapamycin at a dose of 1 mg/kg/d, WT-MSCs notably prolonged the survival of the transplanted heart compared with Rap1-/--MSCs. Rap1-/--MSCs displayed a marked insensitivity to inhibit the mixed lymphocyte reaction (MLR) due to impaired cytokine production and a significantly reduced activity of NF-κB signaling in vitro. Finally, transplantation of encapsulated WT-MSCs greatly prolonged the survival of the heart allograft compared with encapsulated Rap1-/--MSCs. Our results indicate that Rap1 is essential to maintain the immunomodulatory function of MSCs. Deletion of Rap1 results in impaired immunomodulatory function of MSCs.published_or_final_versio
    corecore