6,836 research outputs found

    Time-Restricted Feeding Improves Circadian Dysfunction as well as Motor Symptoms in the Q175 Mouse Model of Huntington's Disease.

    Get PDF
    Huntington's disease (HD) patients suffer from a progressive neurodegeneration that results in cognitive, psychiatric, cardiovascular, and motor dysfunction. Disturbances in sleep/wake cycles are common among HD patients with reports of delayed sleep onset, frequent bedtime awakenings, and fatigue during the day. The heterozygous Q175 mouse model of HD has been shown to phenocopy many HD core symptoms including circadian dysfunctions. Because circadian dysfunction manifests early in the disease in both patients and mouse models, we sought to determine if early intervention that improve circadian rhythmicity can benefit HD and delay disease progression. We determined the effects of time-restricted feeding (TRF) on the Q175 mouse model. At six months of age, the animals were divided into two groups: ad libitum (ad lib) and TRF. The TRF-treated Q175 mice were exposed to a 6-h feeding/18-h fasting regimen that was designed to be aligned with the middle of the time when mice are normally active. After three months of treatment (when mice reached the early disease stage), the TRF-treated Q175 mice showed improvements in their locomotor activity rhythm and sleep awakening time. Furthermore, we found improved heart rate variability (HRV), suggesting that their autonomic nervous system dysfunction was improved. Importantly, treated Q175 mice exhibited improved motor performance compared to untreated Q175 controls, and the motor improvements were correlated with improved circadian output. Finally, we found that the expression of several HD-relevant markers was restored to WT levels in the striatum of the treated mice using NanoString gene expression assays

    In vitro bioaccessibility of β-carotene in pumpkin and butternut squash subjected to different cooking methods

    Get PDF
    β-carotene, a type of provitamin A, is beneficial to our health. However, the compound needs to be released from its food matrix before being utilised by the body. Thus, understanding the bioaccessibility of β-carotene in the food consumed is a crucial step. The objective of this study was to determine the effect of various cooking methods on bioaccessibility of β-carotene in pumpkin and butternut squash. In vitro digestion was carried out on raw and cooked (steamed, boiled, and deep-fried) pumpkin and butternut squash. β-carotene was identified using RP-HPLC. Generally, butternut squash (4.99±0.02mg/100g) had higher β-carotene content than pumpkin (4.34±0.04mg/100g). Thermal processing resulted in lower β-carotene content in pumpkin samples; however, it increased the β-carotene content in butternut squash samples. In term of bioaccessibility, thermal processes increased the percentage of bioaccessible β-carotene in both pumpkin and butternut squash samples. Raw pumpkin had 10.56±0.44% of bioaccessible β-carotene while raw butternut squash had only 1.65±0.04%. Bioaccessibility of β-carotene in deep-fried pumpkin and butternut squash were significantly higher than their raw sample with 68.86±0.86% (p<0.001) and 22.32±2.12% (p<0.05) of bioaccessible β-carotene respectively. The deep-frying method was found to enhance the bioaccessibility of β-carotene significantly in both of these samples but not boiling and steaming methods

    Vlasov Description Of Dense Quark Matter

    Get PDF
    We discuss properties of quark matter at finite baryon densities and zero temperature in a Vlasov approach. We use a screened interquark Richardson's potential consistent with the indications of Lattice QCD calculations. We analyze the choices of the quark masses and the parameters entering the potential which reproduce the binding energy (B.E.) of infinite nuclear matter. There is a transition from nuclear to quark matter at densities 5 times above normal nuclear matter density. The transition could be revealed from the determination of the position of the shifted meson masses in dense baryonic matter. A scaling form of the meson masses in dense matter is given.Comment: 15 pages 4 figure

    Laser-induced fluorescence studies of HfF+ produced by autoionization

    Get PDF
    Autoionization of Rydberg states of HfF, prepared using the optical-optical double resonance (OODR) technique, holds promise to create HfF+ in a particular Zeeman level of a rovibronic state for an electron electric dipole moment (eEDM) search. We characterize a vibronic band of Rydberg HfF at 54 cm-1 above the lowest ionization threshold and directly probe the state of the ions formed from this vibronic band by performing laser-induced fluorescence (LIF) on the ions. The Rydberg HfF molecules show a propensity to decay into only a few ion rotational states of a given parity and are found to preserve their orientation qualitatively upon autoionization. We show empirically that we can create 30% of the total ion yield in a particular |J+,M+> state and present a simplified model describing autoionization from a given Rydberg state that assumes no angular dynamics.Comment: 8 pages, 5 figure

    Configuration study for a 30 GHz monolithic receive array, volume 2

    Get PDF
    The formalism of the sidelobe suppression algorithm and the method used to calculate the system noise figure for a 30 GHz monolithic receive array are presented. Results of array element weight determination and performance studies of a Gregorian aperture image system are also given

    Configuration study for a 30 GHz monolithic receive array, volume 1

    Get PDF
    Gregorian, Cassegrain, and single reflector systems were analyzed in configuration studies for communications satellite receive antennas. Parametric design and performance curves were generated. A preliminary design of each reflector/feed system was derived including radiating elements, beam-former network, beamsteering system, and MMIC module architecture. Performance estimates and component requirements were developed for each design. A recommended design was selected for both the scanning beam and the fixed beam case. Detailed design and performance analysis results are presented for the selected Cassegrain configurations. The final design point is characterized in detail and performance measures evaluated in terms of gain, sidelobe level, noise figure, carrier-to-interference ratio, prime power, and beamsteering. The effects of mutual coupling and excitation errors (including phase and amplitude quantization errors) are evaluated. Mechanical assembly drawings are given for the final design point. Thermal design requirements are addressed in the mechanical design

    Microminiaturized, biopotential conditioning system (MBCS)

    Get PDF
    Multichannel, medical monitoring system allows almost complete freedom of movement for subject during monitoring periods. System comprises monitoring unit (biobelt), transmission line, and data acquisition unit. Belt, made of polybenzimidizole fabric, is wrapped around individual's waist and held in place by overlapping sections of Velcro closure material
    corecore