7,542 research outputs found

    Magnetic Properties of the Novel Low-Dimensional Cuprate Na5RbCu4(AsO4)4Cl2

    Full text link
    The magnetic properties of a new compound, Na5RbCu4(AsO4)4Cl2 are reported. The material has a layered structure comprised of square Cu4O4 tetramers. The Cu ions are divalent and the system behaves as a low-dimensional S=1/2 antiferromagnet. Spin exchange in Na5RbCu4(AsO4)4Cl2 appears to be quasi-two-dimensional and non-frustrated. Measurements of the bulk magnetic susceptibility and heat capacity are consistent with low-dimensional magnetism. The compound has an interesting, low-entropy, magnetic transition at T = 17 K.Comment: 4 pages, 5 figure

    Au-SN Flip-Chip Solder Bump for Microelectronic and Optoelectronic Applications

    Get PDF
    As an alternative to the time-consuming solder pre-forms and pastes currently used, a co-electroplating method of eutectic Au-Sn alloy was used in this study. Using a co-electroplating process, it was possible to plate the Au-Sn solder directly onto a wafer at or near the eutectic composition from a single solution. Two distinct phases, Au5Sn and AuSn, were deposited at a composition of 30at.%Sn. The Au-Sn flip-chip joints were formed at 300 and 400 degrees without using any flux. In the case where the samples were reflowed at 300 degrees, only an (Au,Ni)3Sn2 IMC layer formed at the interface between the Au-Sn solder and Ni UBM. On the other hand, two IMC layers, (Au,Ni)3Sn2 and (Au,Ni)3Sn, were found at the interfaces of the samples reflowed at 400 degrees. As the reflow time increased, the thickness of the (Au,Ni)3Sn2 and (Au,Ni)3Sn IMC layers formed at the interface increased and the eutectic lamellae in the bulk solder coarsened.Comment: Submitted on behalf of TIMA Editions (http://irevues.inist.fr/tima-editions

    Spin-lattice order in frustrated ZnCr2O4

    Get PDF
    Using synchrotron X-rays and neutron diffraction we disentangle spin-lattice order in highly frustrated ZnCr2_2O4_4 where magnetic chromium ions occupy the vertices of regular tetrahedra. Upon cooling below 12.5 K the quandary of anti-aligning spins surrounding the triangular faces of tetrahedra is resolved by establishing weak interactions on each triangle through an intricate lattice distortion. The resulting spin order is however, not simply a N\'{e}el state on strong bonds. A complex co-planar spin structure indicates that antisymmetric and/or further neighbor exchange interactions also play a role as ZnCr2_2O4_4 resolves conflicting magnetic interactions

    Refined Simulations of the Reaction Front for Diffusion-Limited Two-Species Annihilation in One Dimension

    Full text link
    Extensive simulations are performed of the diffusion-limited reaction A++B0\to 0 in one dimension, with initially separated reagents. The reaction rate profile, and the probability distributions of the separation and midpoint of the nearest-neighbour pair of A and B particles, are all shown to exhibit dynamic scaling, independently of the presence of fluctuations in the initial state and of an exclusion principle in the model. The data is consistent with all lengthscales behaving as t1/4t^{1/4} as tt\to\infty. Evidence of multiscaling, found by other authors, is discussed in the light of these findings.Comment: Resubmitted as TeX rather than Postscript file. RevTeX version 3.0, 10 pages with 16 Encapsulated Postscript figures (need epsf). University of Geneva preprint UGVA/DPT 1994/10-85

    Quantitative study of molecular N_2 trapped in disordered GaN:O films

    Full text link
    The structure of disordered GaN:O films grown by ion-assisted deposition is investigated using x-ray absorption near-edge spectroscopy and Raman spectroscopy. It is found that between 4 and 21 % of the nitrogen in the films is in the form of molecular N_2 that interacts only weakly with the surrounding matrix. The anion to cation ratio in the GaN:O host remains close to unity, and there is a close correlation between the N_2 fraction, the level of oxygen impurities, and the absence of short-range order in the GaN:O matrix.Comment: 5 pages, 3 figure

    Structural and magnetic study of a dilute magnetic semiconductor: Fe doped CeO2 nanoparticles

    Full text link
    This paper reports the effect of Fe doping on the structure and room temperature ferromagnetism of CeO2 nanoparticles. X-ray diffraction and selective area electron diffraction measurement reflects that Ce1-xFexO2 (x = 0.0 - 0.07) nanoparticles exhibit single phase nature with cubic structure and none of the sample showed the presence of any secondary phase. The mean particle size calculated by using a transmission electron microscopy measurement was found to increase with increase in Fe content. DC magnetization measurements performed at room temperature indicates that all the samples exhibit ferromagnetism. The saturation magnetic moment has been found to increase with an increase in the Fe content.Comment: 16 Pages, 5 figure, 1 Table, Accepted in JN

    Anisotropic strains and magnetoresistance of La_{0.7}Ca_{0.3}MnO_{3}

    Full text link
    Thin films of perovskite manganite La_{0.7}Ca_{0.3}MnO_{3} were grown epitaxially on SrTiO_3(100), MgO(100) and LaAlO_3(100) substrates by the pulsed laser deposition method. Microscopic structures of these thin film samples as well as a bulk sample were fully determined by x-ray diffraction measurements. The unit cells of the three films have different shapes, i.e., contracted tetragonal, cubic, and elongated tetragonal for SrTiO_3, MgO, and LaAlO_3 cases, respectively, while the unit cell of the bulk is cubic. It is found that the samples with cubic unit cell show smaller peak magnetoresistance than the noncubic ones do. The present result demonstrates that the magnetoresistance of La_{0.7}Ca_{0.3}MnO_{3} can be controlled by lattice distortion via externally imposed strains.Comment: Revtex, 10 pages, 2 figure
    corecore