3,488 research outputs found

    Ergosterol Effect on the Desaturation of 14C-Cis-Vaccenate in Tetrahymena

    Get PDF
    Supplement of ergosterol to the growth medium of the ciliated protozoan Tetrahymena pyriformis W leads to incorporation of the foreign sterol within cell membranes and suppression of synthesis of the native sterol-like compound tetrahymanol, as well as to changes in the fatty acid compositions of several major classes of membrane lipid. Alteration of fatty acid composition is thought to represent a regulatory mechanism whereby optimum membrane fluidity is maintained when the slightly dissimilar foreign sterol is added into the phospholipid bilayer of the membranes. The present study, using several different conditions of growth temperature, substrate concentrations and incubation time, and ergosterol concentrations and exposure time, is an attempt to provide evidence supporting a hypothetical regulatory mechanism. This mechanism proposes that there is a feedback regulation by membrane-bound sterol on an enzyme or enzymes involved in synthesis of the long chain fatty acids contained in membrane phospholipid. Such a mechanism could account for the balance between sterol and fatty acid content of membrane. The data presented here show that a statistically significant increase in desaturation of 14C-cis-vaccenate can be demonstrated in Tetrahymena cell cultures whose membranes contain the foreign sterol, when growth temperature is maintained at 20° or 29.5°. Tetrahymena desaturated 14C-cis-vaccenate substrate in both ergosterol supplemented and normal cultures. The 14C labeled product, 6,11-18:2 was recovered and separated by silver nitrate-Unisil column chromatography

    Nanoscale grains, high irreversibility field, and large critical current density as a function of high energy ball milling time in C-doped magnesium diboride

    Full text link
    Magnesium diboride (MgB2) powder was mechanically alloyed by high energy ball milling with C to a composition of Mg(B0.95C0.05)2 and then sintered at 1000 C in a hot isostatic press. Milling times varied from 1 minute to 3000 minutes. Full C incorporation required only 30-60 min of milling. Grain size of sintered samples decreased with increased milling time to less than 30 nm for 20-50 hrs of milling. Milling had a weak detrimental effect on connectivity. Strong irreversibility field (H*) increase (from 13.3 T to 17.2 T at 4.2 K) due to increased milling time was observed and correlated linearly with inverse grain size (1/d). As a result, high field Jc benefited greatly from lengthy powder milling. Jc(8 T, 4.2 K) peaked at > 80,000 A/cm2 with 1200 min of milling compared with only ~ 26,000 A/cm2 for 60 min of milling. This non-compositional performance increase is attributed to grain refinement of the unsintered powder by milling, and to the probable suppression of grain growth by milling-induced MgO nano-dispersions.Comment: 12 pages, 11 figure

    Potential, core-level and d band shifts at transition metal surfaces

    Full text link
    We have extended the validity of the correlation between the surface 3d-core-level shift (SCLS) and the surface d band shift (SDBS) to the entire 4d transition metal series and to the neighboring elements Sr and Ag via accurate first-principles calculations. We find that the correlation is quasilinear and robust with respect to the differencies both between initial and final-state calculations of the SCLS's and two distinct measures of the SDBS's. We show that despite the complex spatial dependence of the surface potential shift (SPS) and the location of the 3d and 4d orbitals in different regions of space, the correlation exists because the sampling of the SPS by the 3d and 4d orbitals remains similar. We show further that the sign change of the SCLS's across the transition series does indeed arise from the d band-narrowing mechanism previously proposed. However, while in the heavier transition metals the predicted increase of d electrons in the surface layer relative to the bulk arises primarily from transfers from s and p states to d states within the surface layer, in the lighter transition metals the predicted decrease of surface d electrons arises primarily from flow out into the vacuum.Comment: RevTex, 22 pages, 5 figures in uufiles form, to appear in Phys.Rev.

    Effects of Neutron Irradiation on Carbon Doped MgB2 Wire Segments

    Full text link
    We have studied the evolution of superconducting and normal state properties of neutron irradiated Mg(B.962_{.962}C.038_{.038})2_2 wire segments as a function of post exposure annealing time and temperature. The initial fluence fully suppressed superconductivity and resulted in an anisotropic expansion of the unit cell. Superconductivity was restored by post-exposure annealing. The upper critical field, Hc2_{c2}(T=0), approximately scales with Tc_c starting with an undamaged Tc_c near 37 K and Hc2_{c2}(T=0) near 32 T. Up to an annealing temperature of 400 o^ oC the recovery of Tc_c tends to coincide with a decrease in the normal state resistivity and a systematic recovery of the lattice parameters. Above 400 o^ oC a decrease in order along the c- direction coincides with an increase in resistivity, but no apparent change in the evolution of Tc_c and Hc2_{c2}. To first order, it appears that carbon doping and neutron damaging effect the superconducting properties of MgB2_2 independently

    Re-entrant ferroelectricity in liquid crystals

    Full text link
    The ferroelectric (Sm C^*) -- antiferroelectric (Sm CA^*_A) -- reentrant ferroelectric (re Sm C^*) phase temperature sequence was observed for system with competing synclinic - anticlinic interactions. The basic properties of this system are as follows (1) the Sm C^* phase is metastable in temperature range of the Sm CA^*_A stability (2) the double inversions of the helix handedness at Sm C^* -- Sm CA^*_A and Sm CA^*_A% -- re-Sm C^* phase transitions were found (3) the threshold electric field that is necessary to induce synclinic ordering in the Sm CA^*_A phase decreases near both Sm CA^*_A -- Sm C^* and Sm CA^*_A -- re-Sm C^* phase boundaries, and it has maximum in the middle of the Sm CA^*_A stability region. All these properties are properly described by simple Landau model that accounts for nearest neighboring layer steric interactions and quadrupolar ordering only.Comment: 10 pages, 5 figures, submitted to PR

    Correlated defects, metal-insulator transition, and magnetic order in ferromagnetic semiconductors

    Full text link
    The effect of disorder on transport and magnetization in ferromagnetic III-V semiconductors, in particular (Ga,Mn)As, is studied theoretically. We show that Coulomb-induced correlations of the defect positions are crucial for the transport and magnetic properties of these highly compensated materials. We employ Monte Carlo simulations to obtain the correlated defect distributions. Exact diagonalization gives reasonable results for the spectrum of valence-band holes and the metal-insulator transition only for correlated disorder. Finally, we show that the mean-field magnetization also depends crucially on defect correlations.Comment: 4 pages RevTeX4, 5 figures include

    Local Isoelectronic Reactivity of Solid Surfaces

    Full text link
    The quantity w^N(r) = ( 1/ k^2 T_el)[partial n(r, T_el) / partial T_el]_(v(r),N) is introduced as a convenient measure of the local isoelectronic reactivity of surfaces. It characterizes the local polarizability of the surface and it can be calculated easily. The quantity w^N(r) supplements the charge transfer reactivity measured e.g. by the local softness to which it is closely related. We demonstrate the applicability and virtues of the function w^N(r) for the example of hydrogen dissociation and adsorption on Pd(100).Comment: RevTeX, 13 pages, 3 figures, to appear in Phys. Rev. Let

    Robustness and epistasis in mutation-selection models

    Full text link
    We investigate the fitness advantage associated with the robustness of a phenotype against deleterious mutations using deterministic mutation-selection models of quasispecies type equipped with a mesa shaped fitness landscape. We obtain analytic results for the robustness effect which become exact in the limit of infinite sequence length. Thereby, we are able to clarify a seeming contradiction between recent rigorous work and an earlier heuristic treatment based on a mapping to a Schr\"odinger equation. We exploit the quantum mechanical analogy to calculate a correction term for finite sequence lengths and verify our analytic results by numerical studies. In addition, we investigate the occurrence of an error threshold for a general class of epistatic landscape and show that diminishing epistasis is a necessary but not sufficient condition for error threshold behavior.Comment: 20 pages, 14 figure

    Experimental study exploring the factors that promote rib fragility in the elderly

    Get PDF
    Rib fractures represent a common injury type due to blunt chest trauma, affecting hospital stay and mortality especially in elderly patients. Factors promoting rib fragility, however, are little investigated. The purpose of this in vitro study was to explore potential determinants of human rib fragility in the elderly. 89 ribs from 13 human donors (55\u201399 years) were loaded in antero-posterior compression until fracture using a material testing machine, while surface strains were captured using a digital image correlation system. The effects of age, sex, bone mineral density, rib level and side, four global morphological factors (e.g. rib length), and seven rib cross-sectional morphological factors (e.g. cortical thickness, determined by \u3bcCT), on fracture load were statistically examined using Pearson correlation coefficients, Mann\u2013Whitney U test as well as Kruskal\u2013Wallis test with Dunn-Bonferroni post hoc correction. Fracture load showed significant dependencies (p < 0.05) from bone mineral density, age, antero-posterior rib length, cortical thickness, bone volume/tissue volume ratio, trabecular number, trabecular separation, and both cross-sectional area moments of inertia and was significantly higher at rib levels 7 and 8 compared to level 4 (p = 0.001/0.013), whereas side had no significant effect (p = 0.989). Cortical thickness exhibited the highest correlation with fracture load (r = 0.722), followed by the high correlation of fracture load with the area moment of inertia around the longitudinal rib cross-sectional axis (r = 0.687). High correlations with maximum external rib surface strain were detected for bone volume/tissue volume ratio (r = 0.631) and trabecular number (r = 0.648), which both also showed high correlations with the minimum internal rib surface strain (r = 12 0.644/ 12 0.559). Together with rib level, the determinants cortical thickness, area moment of inertia around the longitudinal rib cross-sectional axis, as well as bone mineral density exhibited the largest effects on human rib fragility with regard to the fracture load. Sex, rib cage side, and global morphology, in contrast, did not affect rib fragility in this study. When checking elderly patients for rib fractures due to blunt chest trauma, patients with low bone mineral density and the mid-thoracic area should be carefully examined

    Inflammation and abnormal tissue remodeling in F508del mutant mice

    Get PDF
    corecore