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Terms and Abbreviations 

l. fatty acids 

a,b-X:c -- a,b (position of double bonds); X (carbon chain 

length); c (number of double bonds). Example: 6,11-18:2 is 

a fatty acid with 18 carbons and 2 doubl e bonds at carbons 6 

and 11. 

2. C:M 2:1 -- chloroform:methanol 2:1 (v/v) 

1. 
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Abstract 

Supplement of ergosterol to the growth medium of the ciliated protozoan 

Tetrahymena pyriformis W leads to incorporation of the foreign sterol within 

cell membranes and suppression of synthesis of the native sterol-like com

pound tetrahymanol, as well as to changes in the fatty acid compositions of 

several major classes of membrane lipid. Alteration of fatty acid composition 

is thought to represent a regulatory mechanism whereby optimum membrane fluid

ity is maintained when the slightly dissimilar foreign sterol is added into 

the phospholipid bilayer of the membranes. 

The present study, using several different conditions of growth temper-

ature, substrate concentrations and incubation time, and ergosterol concentra-

tions and exposure time, is an attempt to provide evidence supporting a hypo

thetical regulatory mechanism. This mechanism proposes that there is a feed-

back regulation by membrane-bound sterol on an enzyme or enzymes involved in 

synthesis of the long chain fatty acids contained in membrane phospholipid. 

Such a mechanism could account for the balance between sterol and fatty acid 

content of membrane. The data presented here show that a statistically sig

nificant increase in desaturation of 
14

c-cis-vaccenate can be demonstrated in 

Tetrahymena cell cultures whose membranes contain the foreign sterol, when 

growth temperature is maintained at 20° or 29.5°. 

Tetrahymena desaturated 14
C-cis-vaccenate substrate in both ergosterol 

supplemented and normal cultures. The 14c labeled product, 6,11-18:2 was re

covered and separated by silver nitrate-Unisil column chromatography. 



Introduction 

As the function of cholesterol in human membranes is being 

studied around the world (1), another sterol (ergosterol) is studied 

in our laboratory to elucidate whether it can influence fatty acid 

biosynthesis in Tetrahymena pyriformis W. The goal of this research 

is to find out part of the function of the sterol in the biosynthesis 

of lipids in Tetrahymena, and it is hoped that this finding can provide 

information about the function of cholesterol in humans. 

Tetrahymena pyriformis W is a pearshaped ciliated protozoan. 

It synthesizes a natural sterol-like pentacyclic triterpene solid 

alcohol, tetrahymanol . Tetrahymanol has the strUcture: 

Tetrahymanol, which comprises 0.14% of the dry weight of these 

cells (2), is found in membranes such as cilia (3, 4), microsomes (3), 

etc; and in the molar ratio to phospholipids of 0 . 5  and 0.041 

respectively in these membranes. 

Just as cholesterol, a tetracyclic triterpene, is found in human 

cell membranes, tetrahymanol is the only sterol-like molecule found 

in Tetrahymena membranes . Tetrahymena itself can not synthesize any 

true sterols (cholesterol, ergosterol etc), but it can incorporate 

them (5, 6). Tetrahymanol and phospholipids are the most plentiful 

lipids found in membranes; they associate with membrane proteins by 

both hydrophobic and hydrophilic interactions. The most widely 
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accepted model of  the biological membrane is the fluid mosaic model 

of S. J .  Singer (7, 8). 

This model says that phospholipids, which are the major membranous 

lipids, form a bilayer: their hydrophilic heads {phosphogroup} 

constitute the top and bottom surfaces of the membrane and can associate 

with peripheral proteins by hydrophilic interactions, while the hydro

phobic tails (extended chains of  fatty acyl groups} are buried in the 

membrane interior and can interact with integral proteins by hydro

phobic (or van der Waals) interaction. The total thickness of  the 

membrane is about 45 �. Tetrahymanol is mostly hydrophobic and has 

only one hydrophilic group (hydroxyl) and therefore is mostly buried 

in the membrane interior . The interior of the membrane has larger 

freedom of movement compared with the exterior, due to the weaker van 

der \>aals interactions in the interior compared to the exterior ionic 

or hydrogen bonding interactions. Proteins, which contribute to the 

structural integrity of the membrane, can act as enzymes or function 

as pumps (moving material into and out of  cells and organelles) . It is 

the diversity of  its protein activity that gives each particular 

membrane its distinctive character. 

One of the important properties of  any membrane is its fluidity. 

In chemical terms, a membrane can be considered to be a nonhomogeneous 

mixture of  lipids {phospholipids, sterols or sterol-like substances, 

carotenoids, sphingolipids, and phosphonolipids) and proteins 

(including enzymes). It doesn't have a very sharp melting point. In 

biochemical terms, the physical state of the membrane above the melting 

point is liquid-crystalline and the pnase beloW'mel�jng point.is gel. 

Two factors determine this fluidity (gel or liquid-
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crystalline): the chemical composition of membrane, and the surrounding 

temperature ( 9 ). The former includes the extent of saturation of the 

lipid tails (fatty acids), the amount and chemical structure of the 

sterols, and the kind of polar group. Any changes in these factors 

might cause change of fluidity, and the cells should do some self-

regulation to compensate for these changes if they intend to maintain 

their natural fluidity. A direct input of the sterol (ergosterol, for 

example) at the fatty acid biosynthetic level might represent an 

efficient means of regulation of the amounts of suitable fatty acid 

products (cis-vaccenic acid, for example) to preserve the natural 

fluidity of membranes . 

Ergosterol is used in this research to attempt to detect a 

regulation of the biosynthesis of fatty acids in microsomal membranes. 

Ergosterol is the well-known sterol of fungi and yea�ts, which 

functions as a precursor of Vitamin D (lJ)). and has the structure: 

��� Ho 
It is obvious that ergosterol and tetrahymanol have some differences 

in molecular size and shape (one ring, one side chain, three double 

bonds and some methyl groups). 

It is logical to postulate that this different shape and size of 
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the ergosterol molecule would lead to different interactions with phospho-

lipids in Tetrahymena membranes . This would cause cells to have either 



different membrane properties (different fluidity, for example) or 

altered, compensating fatty ac.id compositions when tetrahymanol was 

replaced by ergosterol. 

It has been found that ergosterol can be incorporated into 

Tetrahymena cells and the biosynthesis of tetrahymanol is then completely 

inhibited (6, l l). It ·is also found that tetrahymanol was completely 

replaced by ergosterol in ciliary membranes (4). 

Furthermore, ergosterol-supplemented cells indeed had fatty acid 

compositions different from those of the tetrahymanol-containing cells. 

Substitution of ergosterol led Tetrahymena to synthesize more short

chain fatty acids and less unsaturated fatty acids, as well as to 

increase the amount of an unusual isomer of linoleic acid, 6,11-18:2 

(lE, 5). It is particularly interesting that some of these differences 

can be traced to apparent shifts from the major pathway of fatty acid 

biosynthesis to the minor pathway (see below). 

There are two pathways of fatty acid biosynthesis found in 

Tetrahymena (l�, l�) :  

6 

� 16:0 � 18:0 ____.. 9-18:1 ---> 9,12-18:2 -....-+ 6,9,12-18:3 

9-16:1 � 11-18:1 � 6,11-18:2 

The first pathway is the main one in normal cells. The fatty acid 

products found in this pathway are: 9,12-18:2, representing 20% of the 

total fatty acids, and 6,9,12-18:3, 30% of the total (5). 

The second pathway is a minor one in normal cells, but was much 

enhanced in ergosterol-supplemented cells. Ferguson et� (5) first 

ident ified the unusual isomer (6,11-18:2) of linoleic acid in the fatty 

acids of Tetrahymena. Karoly and Conner then proved the existence of 



this minor pathway, by means of incubation of whole cells with radio

active precursors (14). Ferguson et� (5) found that the amount of 

6,11-18:2 increased at the same time the amounts of 9,12-18:2 and 

6,9,12-18:3 decreased when tetrahymanol was substituted by ergosterol 

in whole cells. The ratio of the amount of products (9,12-18:2 and 

6,9,12-18:3) from the main pathway to the product (6,11-18:2) from the 

minor pathway in normal cells was 13.6:1 while this ratio was reduced 

to 10.6:1 (calculated from (5)) after ergosterol was supplemented. But 

Ferguson et� didn' t f\nd the mechanism by which ergosterol could 

influence either desaturation or elongation of fatty acids or their 

incorporation into phospholipids. 

In the research of Maynard Neville (15), who was another worker 

in our laboratory, labelled precursor (
14

c-9-18:1) was incubated 

with whole cells to investigate the presumed effect of ergosterol on 

the major pathway, and he found that the amounts of 9,12-18:2 and 6,9, 

12-18:3 produced were reduced after the supplement of ergosterol. In 

my research, substrate 14 c-cis-vaccenate was incubated with whole 
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cells of both normal and ergosterol-supplemented cultures to investigate 

the presumed effect of ergosterol in the minor pathway. If the result 

shows that the production of 6,11-18:1 is significantly changed after 

the supplement of ergosterol, it then can be said that ergosterol 

seems to influence, in some way, the desaturation mechanism of fatty 

acid biosynthesis in T.etrahymena. 

In principle, the phospholipid fatty acid composition (phospholipid 

is the main lipid in membrane) may be influenced: 

1) by changes in the distribution of fatty acids biosynthesized de 



2) by selectivity at the level of incorporation of fatty acids into 

phospholipid as mediated by acyltransferases, 

3) by alteration of the rates of turnover of fatty acyl groups of 

phospholipids in membranes, or 

4) by a combination of these mechanisms. The results mentioned 

above (5, 15) revealed that mechanism one seems likely. This 

change would involve elongation (fatty acids from ergosterol-supplemented 

cells are comparatively shorter) and/or desaturation (the degree of 

unsaturation in ergosterol-supplemented cells is reduced). 

The endoplasmic reticulum is an organelle of the cell where the 

desaturating and elongating enzyme systems are located (16). When the 

membranes of the endoplasmic reticulum are fragmented during breakage of 

cells, the membrane fragments are self-reassembled in the form of small, 

completely enclosed vesicles called microsomes (TY). 
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It was found that ergosterol replaced tetrahymanol in Tetrahymena 

membranes (6), but the whole cell was able to contain 3-fold more 

ergosterol than tetrahymanol: Tetrahymena normal whole cells contained 

tetrahymanol in a molar ratio of 0.082 to phospholipids, while ergosterol

supplemented whole cells contained ergosterol in a molar ratio of 

0.263 to phospholipids (calculated from (4) ). More recent research of 

Ferguson (18) showed that the Tetrahymena microsomes were able to contain 

ergosterol 3.5-fold more than tetrahymanol: Tetrahymena normal microsomes 

contained tetrahymanol in a molar ratio of 0.04 to phospholipids, while 

ergosterol-supplemented microsomescontained ergosterol in a molar ratio 

of 0.14. This excessive amount of ergosterol might originate either 

as an artifact from food vacuoles broken during sonication, with simple 



adsorption of ergosterol to the microsomes, or from actual incorporation 

into the microsomal membranes. The latter possibility was assumed in 

this research; the two alternatives cannot be distinguished at this 

time. 
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Microsomes were separated from both tetrahymanol-containing cells 

(normal cells) and ergosterol-supplemented cells. 14c-cis-vaccenic acid, 

again, was used as the precursor to test the influence of ergosterol 

supplement on biosynthesis of fatty acids. 

14c · · · d th · d · th · -c1s-vaccen1c aci was e main precursor use in is 

research. Because it was commercially unavailable, it was made by 

growing Nitrobacter agilis with 14c-acetate. Auran and Schmidt (19,20 ) 

showed that Nitrobacter contained cis-vaccenic acid in its lipids at up 

to 96% of total fatty acids, and that Nitrobacter was able to in-

corporate radioactive sodium acetate, which served as precursor for 

synthesizing fatty acids, without a change in fatty acid composition. 

The final cis-vaccenic acid preparation contained a trace of palmitoleic 

acid, which would not significantly interfere with this research, 

because it was itself a precursor of cis-vaccenic acid in Tetrahymena. 



Materials and Methods: 

A. Biosynthesis of Radioactive Cis-vaccenic Acid: 

Cultures of Nitrobacter agilis (American Type Culture Collection) 

were grown under sterile conditions in inorganic medium containing per 

liter of water: Na2HP04"7H20, 3.3g; KH2Po4, 0.2g; NaN02, l.38g; 

Mgso4·H20, lOmg; Cac12·2H20, 4mg; CoC12"6H20, 20 �g; Znso4·1H20, 20 �g; 

CuS04"5H20, 20�g; Na2Mo04"2H20, 20..ug; FeS04-EDTA solution, 10 ml. 

The last item was composed of 77 mg of Feso4·7H20 plus 103 mg of  

disodium EDTA in 50 ml distilled Water (19). The pH of the fresh 

medium was 7.8+0.2. Cultures were grown in a "shaking cart" at 20° 

the culture size was 400 ml in 1 liter Erlenmeyer flasks or 800 ml 

in 2 liter Erlenmeyer flasks, or 1 liter in 2.8 liter low-form 

Erlenmeyer flasks. The flasks were stopped by cheesecloth/cotton 

plugs. Cultures were inoculated from stock cultures grown in 20 to 

200 ml medium at 20-30°' . 14c-sodium acetate (40-€0 mCi/mmole, 

New England Nuclear Co.) was added to a concentration of 1 to 10 µM 

with 1 to 10 x 107 counts per minute to each culture. 

The "shaking cart" was composed of a shaking water bath (Eberbach 

Co.), a laboratory cart and some elastic materials. The flasks were 

put in the cart, which was connected by rope to the shaking water 

bath. The elastic materials were sitting between the cart and shaking 

bath, and served as a buffer, which allowed the cart te be shaken by 

the water bath. 

The Folch method (21) was used to extract the lipids from cells 

which had been removed from the medium by filtering through 0.45 

micrometer millipore filters (Millipore Co.). The lower layer was 

10 



taken to dryness by an evaporation by N2 stream. 

During the extraction of  lipids after filtering of  cells, any 

filter fragments were removed; otherwise they would be dissolved 

together with lipids into the extracting solution and interfere with 

the following experiment. 

11 

Fatty acid methyl esters were prepared from extracted lipids by 

addition of 1-2 ml of  a 0.5 N HC1/CH30H solution, flushing with N2 and 

heating in a heating block (Lab-Line Inc.) at about 75°C for 1-2 hours. 

One milliliter of distilled water was then added and the methyl esters 

were extracted three times into a total of  six milliliters of  petroleum 

ether. Solvent was removed by evaporation under a N2 stream. 

Argentation chromatography was used to separate the fatty methyl 

esters according to chain length and number of  double bonds. Methyl 

esters were applied as a solution in 1 milliliter petroleum ether to 

a 0.5 g silver nitrate-impregnated Unisil (20% AgN03 w/w) column. The 

column was eluted with increasing proportions of  benzene in petroleum 

ether followed by pure diethyl ether, required to remove all of the 

11-18:1 from the columns. The system is described below and the 

separated methyl esters contained in each eluate listed, as determined 

by gas-liquid chromatography using a Varian Aerograph #286010-00 

(Varian Corp.) with a four foot glass column containing 15% H I-EFF-BP 

(DGS) on Chromosorb P (80-100 mesh) and operation column temperature of 

160°c. Methyl cis-vaccenate of known concentration, which was made 

from corrmercial cis-vaccenic acid (Analabs, Inc.), served as the 

standard. The calculation of  relative retention time based on a 

methyl stearate standard allowed identification of  the unknown esters 



in eluates, and the peak area ratio of the unknown to the standard 

allowed the calculation of the unknown concentrations in eluates. Many 

other column systems were investigated during the course of the work 

(data not shown) to find the optimum system yielding the necessary 

separation. The system shown below allows for separation of pure 

11-18:1. 

1 ) 

2) 

3) 

Amount of 
solvent 

20 ml 

20 ml 

10 ml 

Composition of 
solvent 

15% Benzene in 
petroleum ether (v/v) 

50% Benzene in 
petroleum ether (v/v) 

Diethyl ether 

Methyl esters 
identified in eluate 

16:0 

18:1, 16:1 (trace) 

18:1 (trace), 
16:1 (trace) 

The second eluate, which contained radioactive methyl cis

vaccenate as the major constituent, was hydrolyzed in 1-2 milliliters 

10% KOH in CH30H/H20 (8: 2 v/v) in a heating block at 37°C for about 

2 hours, shaking occasionally. One milliliter of distilled water was 

added and the mixture was acidified by addition of an excess pf 

concentrated hydroch·l ori c acid. Free fatty acid was extracted three 

times into a total of six milliliters of petroleum ether. One tenth 

m l  of this solution was placed in a scintillation vial to measure 

radioactivity. Five milliliters toluene-base scintillation fluid 

(6.0 gm POP plus 0. 1 gm POPOP (Eastman) in l liter scintillation grade 

toluene (Fisher)) were added and the sample was counted for two minutes 

in a Beckman LS-lOOC liquid scintillation counter. A background count 

was taken pr1or to counting of experimental samples by doing the same 

procedures but with scintillation fluid only. The rest of the radio-

12 



active cis-vaccenic acid in the petroleum ether solution was dried by 

N2 stream and redissolved in a small amount of absolute ethanol and 

stored in a freezer. 

Most of the substrate used with Tetrahymena in this research 
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was the pure radioactive cis-vaccenic acid as isolated from Nitrobacter; 

however, in the experiment on effect of concentration of substrate, it 

was used in a mixture with nonradioactive cis-vaccenic acid (Analabs, 

Inc.) to give concentrations of 0.1�g,655 µg, l964�g, 2620 �g and 

7200 µg per milliliter of absolute alcohol. The substrate used in every 

sample had a constant activity of about 105 cpm, but variable cis-

vaccenate concentration. 

B. Effect of Ergosterol on Fatty Acid Biosynthesis of Tetrahymena 

Cultures of Tetrahymena pyriformis W were grown under sterile 

conditions in protease peptone medium (2% protease peptone, 0.1% yeast 

extract, 90 micromolar Fe+3-EDTA complex, and distilled water to a 

total volume of 500 ml). Culture size was 20 ml in 50 ml Erlenmeyer 

cheesecloth/cotton stoppered flasks. Growth temperature was maintained 

at either 20° or 29.5°. Cultures were inoculated from stock cultures 

grown in 2.5 ml medium at either 20° or 29.5°, in such amount, i.e. 

0.4 ml per culture, as to insure that the later incubation with 

substrate would take place at the time the culture was in log growth 

phase. Cultures were maintained in a constant temperature incubator 

(Forma Scientific) for either J6 hours at 29.5° or 21 hours at 20°. 

Cultures were divided into two sets: one set was ergosterol cul

tures and the other set was tetrahymanol cultures. Small amounts of 

ergosterol solution (5mg/ml in ethanol) were added into each ergosterol 



culture, while an equivalent amount of absolute ethanol was added 

into each tetrahymanol culture. 

There are many variables which will influence the results. These 

are the amount and exposure time to ergosterol as well as the amount 

and incubation time with substrate (14c-cis-vaccenic acid): ergosterol 

solution was added in different-amounts (0.01, 0.02, 0.03, 0.04, and 

0 .05 ml) and for different times (1, 2, 3, and 4 hours) to determine 

the optimum amount and exposure time for ergosterol. As will be 

shown in Results, the earlier experiments with ergosterol exposure times 

from 1 to 4 hours didn't give consistent results . Ergosterol cultures 

were then exposed to ergosterol from the beginning of cell growth: 

14 

that is, cells and ergosterol were added to the culture medium simultaneously. 

Substrate (radioactive cis-vaccenic acid) was added at different concen

trations per culture (10-2  µg, 65.5 µg, 196.4 µg, 262.0 µg, and 720.0 µg) 

and incubated for different periods (0.5 hr, 1 hr, 1 .5 hrs, and 2 hrs) 

to determine the optimum concentration and incubation time for substrate. 

The methods of filtering Tetrahymena cells, extraction of lipids 

and esterification of fatty acids were done by the same method and 

materials as those done to Nitrobacter shown in Part A, except that the 

pore size of filters for Tetrahymena cells was 3 micrometers. 

Argentation chromatography (see Part A) was used again to separate 

the Tetrahymena fatty acid methyl esters, but the e lution pattern was 

changed as follows: 

1) 

Amount of 
solvent 

20 ml 

Composition of 
solvent 

40% Benzene/Petroleum 
ether (v/v) 

Methyl esters 
identified in eluates 

X:O, X:l, 11-18:1 
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2) l 0 ml 75% Benzene/Petroleum 11 : 18:1 (trace) 
ether (v/v) 9,12-18: 2 

3) 15 ml 95% Benzene/Diethyl 9,12-18:2 (trace) 
ether (v/v) 6 '11_-18: 2 

4) 10 ml Diethyl ether 6,11- 18:2 (trace) 
6,9,12-18:3 

The esters in each eluate were identified again by gas-liquid 

chromatography, as described in Part A. 

The above separated eluates were placed into scintillation vials 

and air-dried . Scintillation fluid was added and the samples were 

counted as described in Part A. 

In every set of argentation chromatography procedures, one 

background column was prepared for correction for background contamination. 

This column had the equivalent amount of Tetrahymena esters and equivalent 

amount of ester of 14
c-cis-vaccenic acid. The radioactivity of each 

fraction was calculated as the percentage of overall counts from the 

background column, then subtracted from the percentage of the corresponding 

fraction of the sample columns as a correction for substrate conta-

mination. The column procedure does give some trailing and imprecise 

separation. 

The difference of percentages in the third fraction (6,ll-18:2) 

between tetrahymanol and ergosterol cultures represented the difference 

of production of 6,11-18: 2 between tetrahymanol cells and ergosterol 

cells. 

Ergosterol (mp 162-164°c, Sigma Chemical Co.) was recrystallized 

from methanol. Unisil ( 100-200 mesh, Clarkson Chemical Co.) was washed 

with hot methanol. The prepared AgNOf Un is ii , which was made by 
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mixing AgN03 with washed Unisil (1:4 w/w) adding water to mix and then 

removing water by rotary evaporation, was stored in the dark at 110°c 

to avoid photo-decomposition and hydration. Columns were shielded with 

aluminum foil to prevent photodecomposition during chromatography. 



Results: 

It is apparent that whole cell studies are necessary before 

microsomal preparations would be useful (15). Some preliminary work 

was done (data not shown) which showed that cis-vaccenate was a 

better overall substrate than oleate for desaturation by Tetrahymena. 

Cis-vaccenate may be used to examine the activity of a proposed 6-

desaturase which carries out the last reaction of the minor pathway 

(14): 16:0 � 9-16:1 � 11-18:1 � 6,11-18:2. A column technique was 

developed to isolate 6,ll-18:Z from the substrate so that product 

fonnation could be measured (see Methods). 

Table I shows the effect of substrate concentration on enzyme 

activity at either 20° or 29.5°. Both ergosterol supplemented and 

nonsupplemented cultures were investigated. Ergosterol solution (5 

mg/ml ethanol) was added to 20 ml cultures of Tetrahymena at the 

late log growth phase. After three hours, combinations of 14c-labeled 

11-18:1 and nonlabeled 11-18:1 mixed to give various concentrations 

of the substrate were incubated with cultures for one hour. Results 
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at both 20° and 29.5° show that higher concentrations of cis-vaccenate 

do not enhance the difference between the enzyme activities of nonnal 

and ergosterol supplemented cells to any significant extent; however, 

at very low concentrations (0.02 "g 14c-cis-vaccenate only, no carrier 

added) there was a significant difference in enzyme activity. For this 

reason subsequent experiments were carried out using only labeled ciS-

vaccenate as substrate. 

The effect of incubation time with substrate on enzyme activity 

also was investigated at 20° and 29.5°. The culture sizes, the conditions 



of growth, the addition of ergosterol, and the addition of substrate 

were all the same as described above, but the incubation time with 

substrate was varied from 0.5 to 2.0 hours. Table II  shows that the 

optimum time for substrate incubation at 20° was between one and two 

hours, while the best time at 29.5° was one hour; however, for ease 

of comparison with other workers' data (15), a one hour incubation 

time was used in · . subsequent experiments. 

Initial experiments to investigate the effect of ergosterol 

supplement on enzyme activity were performed using twenty ml cultures, 

either ergosterol supplemented or nonsupplemented, grown at 20° or 

29.5°. Table III  lists the results of experiments to find the optimum 

concentration of ergosterol needed to show a difference in 6-desatur

ation. The final concentrations of ergosterol used were 0.15, 0.20, 

0.25, 0.30 and 0.35 mg/20 ml culture. Cells were grown either with or 

without the sterol supplement prior to incubation with substrate. 

Percentages indicate the percent in the product fraction of the total 

counts per minute recovered from column chromatography following 

extraction of lipids oy the modified Folch partition method and me

thylation by HC1/CH30H described in Methods. The results showed that 

0.20 and 0.25 mg of ergosterol per culture produce the best effect of 

ergosterol on 6-desaturase activity. Since 0.20 mg/culture (0.01 mg/ 

ml) is the same ergosterol concentration as used in earlier studies 

(5, 16), this concentration was used in subsequent experiments for ease 

in comparison of data. 

Table iV lists· the results of an experiment designed to find the 

optimum exposure time of Tetrahymena to ergosterol at 20° and 29.5°. 

The experiments were done under the same conditions as those described 
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in Table III, except that the growth in the presence of ergosterol 

prior to addition of substrate varied from zero to four hours. Both 

results at 20° and 29.5° showed that the best difference in 6-desa-

turase enzyme activity is observed after three hours exposure of the 

cells to ergosterol; however, another experiment was done to leng

then the exposure of cells to ergosterol to much longer time by 

adding ergosterol at the start of growth of cells, and the result 

is shown in Table V. These experimental conditions,at both 20° and 

29.5� show the best results of this research. The effect of the long

term ergosterol supplement is to cause Tetrahymena pyriformis �cells 

to synthesize an average of seventeen percent more 6,11-18:2 than 

normal cells when incubated with 14c-cis-vaccenate for one hour. In 

all experiments, desaturation of 14C-ll-18:1 was generally higher in 

ergosterol-supplemented cells, but the data in Table V are much more 

convincing than earlier experimental results. 
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Discussion: 

This research has been devoted to finding the optimum conditions 

for enzyme activity of a proposed 6-desaturase (see Tables I, II), the 

best dose of ergosterol and its best exposure time (see Tables 111,IV). 

Although all the results listed in these four Tables were invalid when 

judged by the statistical significance (the number of experiments are 

not sufficient), they seemed to show a positive ergosterol effect. 

However, the final experiment with long-term exposure of ergosterol 

(see Table V) gave the best result and was statistically significant 

after applying Student' s t-test (the motive of this experiment is from 

the results of M. E. Neville (15), who found that long-term exposure 

to ergosterol did have a definite influence on the desaturation in the 

major pathway of Tetrahymena). 

The results shown in Table V suggest that supplement of ergosterol 

in Tetrahymena at the whole cell level leads to an increased capacity 

to introduce a double bond at C-6 in the minor pathway. Two interpreta

tions of this result may be proposed, and lead to directions to perform 

further investigations. 

There must be at least one enzyme system involved in the desatur

ation of cis-vaccenate. The desaturases of eucaryotic organisms are lo

cated in the endoplasmic reticulum (22). Ergosterol might affect fluid

ity properties of the phospholipids of both the endoplasmic reticulum in 

vivo and the microsomes in vitro (18). Alternatively, this desaturase 

system might be genetically controlled to respond to sterol substitution 

(18). One preliminary experiment some time ago done by me showed 

20 



that microsomal fatty acid composition seems to be altered. The 

microsomes from ergosterol grown cells had significantly more 6,11-

18:2 than normal cell microsomes (data not shown). The most recent 

research (18) does show the same alteration. These results also 

show that ergosterol seems to enhance the desaturation capacity at 

C-6 in the minor pathway. Another investigation done by M. E. 

Neville shows that ergosterol seems to reduce the capacity of 

Tetrahymena to introduce a double bond at C-12 in the major pathway 

(15, 18). Both of the above results show the significant effect of 

ergosterol on desaturation. 

The direct effect of ergosterol substitution might be at the 

level of acylation of precursors or of phospholipase-catalyzed turn-

over of membrane-bound acyl groups, or of some more general phenomena, 

such as the rate of transport or uptake of the substrates into the 

microsomes (18). Further investigations might resolve these multiple 

possibilities. For example, the last possibility can be studied if an 

investigation is done to compare the rate of uptake of the cis-vaccenate 

into the microsomes, from both ergosterol grown and normal cells under 

the optimum desaturation conditions established in this research (18). 
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No matter what the mechanism of the ergosterol effect is proved to be, 

the observation of higher levels of 6,11-18:2 may be important to connect 

with the observation of lower levels of 9,12-18:2 in ergosterol

containing cells. This may be a 'feedback" phenomenon in Tetrahymena: 

it is proposed that Tetrahymena cells synthesize more 6,11-18:2 in the 

minor pathway and less 9,12-18:2 in the major pathway in order to main

tain their original optimum membrane fluidity when ergosterol is incor-



porated into the membrane. These Tetrahymena may incorporate the 

foreign sterol into their own membranes, saving the energy required 

to synthesize their native sterol, requiring a "feedback" regulation. 

It seems that such a "feedback" phenomenon would be of use in any 

sterol-containing organism, including humans, to regulate the 

production of fatty acids suitable for maintaining the origin�l o�timum 

membrane fluidity and might also provide a partial explanation for the 

mechanism of some human diseases, familial hypercholesterolemia and 

atherosclerosis, caused by excess of cholesterol. 
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TABLE I 

THE EFFECT OF SUBSTRATE CONCENTRATION ON THE FORMATION OF 

LABELED 6,ll-18:2a FOR NORMAL(TOL) AND ERGOSTEROL-SUPPLE-

MENTED CELLS(EOL)b GROWN AT 20° AND 29.5°. 

SUBSTRATE ADDED c %6,11-18:2 PRODUCEDd DIFFERENCE 
TO 20 ml CULTURE TOL EOL (EOL - TOL) 

20° 

0. 01 A.Jg 30 + 4 43 + 4 +13 

66 tag l 0 + 1 11 + 1 +l 

196 )Jg 6 + 1 13 + 2 +7 

262 A.lg 10 + 2 3 + 1 -7 

720 .ug 8 + 2 5 + 1 -3 

29.5° 

0. 01 tlg 13 + 2 20 + 3 +7 

66" A.Jg 7 + 1 9 + 1 +2 

196 A.lg 4 + 1 7 + 1 +3 

.. 262 ,ug 7 + 1 5 + 1 -2 

720�g 0 2 +·2 +2 

a. Values are expressed as the percent of total co�ats per minute 
recovered following a one hour incubation with C-labeled 
11-18:1, extraction of lipids by the modified method of Folch 
and methylation with HC1/CH30H (see Methods). 

b. Cells were grown in 20 ml medium supplemented with ergosterol 
or an equivalent amount of ethanol at the time of late log 
growth phase of the culture (see Methods). 

c. Every concentratioo except the first one (0.01 AJg/culture) was 
a combination of 14C-cis-vaccenate and nonlabeled vaccenate, 
while the first one was the pure 14C-cis-vaccenate only. 

d. Each value is the a�erage of three experiments at 20° or two 
experiments at 29.5 The standard deviation was 2al7�1ated using 
the formula S = [(x1- m)2 + �-:------ + (xn - m) ] /(n - 1)1/2. 
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TABLE II 

DESATURATION OF CIS- VACCENATE BY TETRAHYMENA AS A FUNCTION 

OF TIME OF  EXPOSURE OF CELLS TO THE 14c-LABELED SUBSTRATE 

SUBSTRATE % 6,11-18:2 FORMEDb DIFFERENCE 
EXPOSURE TIMEa TOL EOL (EOL - TOL) 

20° 

0.5 hr 23 + 1 18 + 2 -5 

1. 0 hr 22 + 0 28 + 2 +6 

l. 5 hrs 30 + 2 34 + 2 +4 

l. 75 hrs 32 + 2 35 + 1 +3 

2.0 hrs 29 + 3 39 + 3 +10 

29.5° 

0.25 hr 7 + 1 7 + 1 0 

1. O hr 11 + 2 15 + 2 +4 

l. 25 hrs 12 + 2 15 + 2 +3 

2.0 hrs 17 + l 18 + 2 +l 

a. The concentration of su9strate used in 20° experiments was 0.02 
"g/culture, but in 29.5 experiments was 150.iUg/culture. 
Ergosterol solution (0.2 mg/culture) or an equivalent amount of 
ethanol was added three hours before the addition of substrate. 
Pri9r to the additi9n of ergosterol cultures had grown for 16 h 
(20 ) or 12 h (29.5 ). 

b. Values are expressed as the percent of total counts per minute 
recovered (see Methods), and are the average of two experiments. 

24 



TABLE III 
THE EFFECT OF ERGOSTEROL CONCENTRATION ON THE FORMATION 

OF LABELED 6,11-18:2 FOR NORMAL(TOL) AND ERGOSTEROL-

SUPPLEMENTED CELLS(EOL) GROWN AT 29.5° 

ERGOSTEROL % 6,11-18:2 FORMEDb 
DIFFERENCE 

CONCENTRATIONa TOL EOL (EOL - TOL) 

0.15 mg/culture 7.0 8.5 +1.5 

0. 20 mg/culture 7.1 9.7 +2.0 

0.25 mg/culture 5.0 7.6 +2.6 

0.30 mg/culture 4.0 5.6 +1.6 

0.35 mg/culture 5.9 4. 1 -1.8 

a. Ergosterol solution was added at the late-log growth phase. The 
substrate (11-18:1) was added three hours later, and incubated 
with cells for one hour (see Methods). 

b. Values are expressed as the percent of total counts per minute 
recovered (see Methods), and represent the average of two ex
periments. 
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TABLE IV 

THE EFFECT OF TIME GROWTH WITH ERGOSTEROL ON THE FORMATION 

OF LABELED 6,11-18:2 FOR NORMAL(TOL) AND ERGOSTEROL-SUPP-

LEMENTED CELLS(EOL) GROWN AT 20° AND 29.5° 

GROWTH WIT� % 6,11-18:2 FORMEDb DIFFERENCE 
ERGOSTEROL TOL EOL (EOL - TOL) 

t.oo 

0.25 h 24 28 +4 

1.0 h 22 23 +l 

2.0 h 28 24 -4 

3.0 h 22 27 +5 

4.0 h 23 25 +2 

29.5° 

0 h 13 13 0 

l. 0 h 18 14 -4 

2.0 h 18 23 +5 

3.0 h 24 34 +10 

4.0 h 19 19 0 

a. Ergosterol was added in the late log growth phase; after growth 
for the time indicated, substrate was added and incubated for one 
hour and then the cultures were harvested (see Methods). 

b. Values are expressed as the percent of total counts per minute 
recovered (see Methods),from one experiment only. 

26 



TABLE V 

THE EFFECT OF LONG-TERM GROWTH WITH ERGOSTEROL AT 20° 

AND 29.5° ON THE FORMATION OF LABELED 6,11-18:2 FOR NORMAL 

(TOL) AND ERGOSTEROL-SUPPLEMENTED CELLS(EOL) 

EXPERIMENTa % 6,11-18:2 FORMED� DIFFERENCE 
TOL EOL 

20° (EOL - TOL) 

1 35 52 +17 

2 34 52 +18 

3 26 45 +19 

4 31 48 +17 

Average 31 + 4 49 + 3 +18 

29.5° 

1 25 43 +18 

2 24 39 +15 

Average 25 + 1 41 + 2 +16 

a. Cells were grown for 14 h at 29.5° or 24 h at 20°1an the medium 
supplemented with ergosterol or nonsupplemented. C-Cis-18:1 
was then added and incubated for one hour, and extraction of 
lipids was done by the modified method of Folch (see Methods). 

b. Values are expressed as the percent of total counts per minute 
recovered (see Methods). 
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