10,756 research outputs found
Cocommutative coalgebras: homotopy theory and Koszul duality
We extend a construction of Hinich to obtain a closed model category
structure on all differential graded cocommutative coalgebras over an
algebraically closed field of characteristic zero. We further show that the
Koszul duality between commutative and Lie algebras extends to a Quillen
equivalence between cocommutative coalgebras and formal coproducts of curved
Lie algebras.Comment: 38 page
Recommended from our members
Kleshchev's decomposition numbers and branching coefficients in the Fock space
10.1090/S0002-9947-07-04202-XTransactions of the American Mathematical Society36031179-119
High Dynamic Range RF Front End with Noise Cancellation and Linearization for WiMAX Receivers
This research deals with verification of the high dynamic range for a heterodyne radio frequency (RF) front end. A 2.6 GHz RF front end is designed and implemented in a hybrid microwave integrated circuit (HMIC) for worldwide interoperability for microwave access (WiMAX) receivers. The heterodyne RF front end consists of a low-noise amplifier (LNA) with noise cancellation, an RF bandpass filter (BPF), a downconverter with linearization, and an intermediate frequency (IF) BPF. A noise canceling technique used in the low-noise amplifier eliminates a thermal noise and then reduces the noise figure (NF) of the RF front end by 0.9 dB. Use of a downconverter with diode linearizer also compensates for gain compression, which increases the input-referred third-order intercept point (IIP3) of the RF front end by 4.3 dB. The proposed method substantially increases the spurious-free dynamic range (DRf) of the RF front end by 3.5 dB
A detailed description of the uncertainty analysis for High Area Ratio Rocket Nozzle tests at the NASA Lewis Research Center
A preliminary uncertainty analysis has been performed for the High Area Ratio Rocket Nozzle test program which took place at the altitude test capsule of the Rocket Engine Test Facility at the NASA Lewis Research Center. Results from the study establish the uncertainty of measured and calculated parameters required for the calculation of rocket engine specific impulse. A generalized description of the uncertainty methodology used is provided. Specific equations and a detailed description of the analysis are presented. Verification of the uncertainty analysis model was performed by comparison with results from the experimental program's data reduction code. Final results include an uncertainty for specific impulse of 1.30 percent. The largest contributors to this uncertainty were calibration errors from the test capsule pressure and thrust measurement devices
Electronic bandstructure and optical gain of lattice matched III-V dilute nitride bismide quantum wells for 1.55 m optical communication systems
Dilute nitride bismide GaNBiAs is a potential semiconductor alloy for near-
and mid-infrared applications, particularly in 1.55 m optical
communication systems. Incorporating dilute amounts of Bismuth (Bi) into GaAs
reduces the effective bandgap rapidly, while significantly increasing the
spin-orbit-splitting energy. Additional incorporation of dilute amounts of
Nitrogen (N) helps to attain lattice matching with GaAs, while providing a
route for flexible bandgap tuning. Here we present a study of the electronic
bandstructure and optical gain of the lattice matched
GaNBiAs/GaAs quaternary alloy quantum well (QW) based on the
16-band kp model. We have taken into consideration the interactions
between the N and Bi impurity states with the host material based on the band
anticrossing (BAC) and valence band anticrossing (VBAC) model. The optical gain
calculation is based on the density matrix theory. We have considered different
lattice matched GaNBiAs QW cases and studied their energy dispersion curves,
optical gain spectrum, maximum optical gain and differential gain; and compared
their performances based on these factors. The thickness and composition of
these QWs were varied in order to keep the emission peak fixed at 1.55 m.
The well thickness has an effect on the spectral width of the gain curves. On
the other hand, a variation in the injection carrier density has different
effects on the maximum gain and differential gain of QWs of varying
thicknesses. Among the cases studied, we found that the 6.3 nm thick
GaNBiAs lattice matched QW was most suited for 1.55
m (0.8 eV) GaAs-based photonic applications.Comment: Accepted in AIP Journal of Applied Physic
Scheme for direct measurement of a general two-qubit Hamiltonian
The construction of two-qubit gates appropriate for universal quantum
computation is of enormous importance to quantum information processing.
Building such gates is dependent on accurate knowledge of the interaction
dynamics between two qubit systems. This letter will present a systematic
method for reconstructing the full two-qubit interaction Hamiltonian through
experimental measures of concurrence. This not only gives a convenient method
for constructing two qubit quantum gates, but can also be used to
experimentally determine various Hamiltonian parameters in physical systems. We
show explicitly how this method can be employed to determine the first and
second order spin-orbit corrections to the exchange coupling in quantum dots.Comment: 4 Pages, 1 Figur
First passage times and asymmetry of DNA translocation
Motivated by experiments in which single-stranded DNA with a short hairpin
loop at one end undergoes unforced diffusion through a narrow pore, we study
the first passage times for a particle, executing one-dimensional brownian
motion in an asymmetric sawtooth potential, to exit one of the boundaries. We
consider the first passage times for the case of classical diffusion,
characterized by a mean-square displacement of the form , and for the case of anomalous diffusion or subdiffusion, characterized by a
mean-square displacement of the form with
. In the context of classical diffusion, we obtain an expression
for the mean first passage time and show that this quantity changes when the
direction of the sawtooth is reversed or, equivalently, when the reflecting and
absorbing boundaries are exchanged. We discuss at which numbers of `teeth'
(or number of DNA nucleotides) and at which heights of the sawtooth potential
this difference becomes significant. For large , it is well known that the
mean first passage time scales as . In the context of subdiffusion, the
mean first passage time does not exist. Therefore we obtain instead the
distribution of first passage times in the limit of long times. We show that
the prefactor in the power relation for this distribution is simply the
expression for the mean first passage time in classical diffusion. We also
describe a hypothetical experiment to calculate the average of the first
passage times for a fraction of passage events that each end within some time
. We show that this average first passage time scales as in
subdiffusion.Comment: 10 pages, 4 figures We incorporated reviewers' suggestions from
Physical Review E. We reformulated a few paragraphs in the introduction and
further clarified the issue of the (a)symmetry of passage times. In the
results section, we re-expressed the results in a form that manifest the
important features. We also added a few references concerning anomalous
diffusion. The look (but not the content) of figure 1 was also change
Divergent nematic susceptibility in an iron arsenide superconductor
Within the Landau paradigm of continuous phase transitions, ordered states of
matter are characterized by a broken symmetry. Although the broken symmetry is
usually evident, determining the driving force behind the phase transition is
often a more subtle matter due to coupling between otherwise distinct order
parameters. In this paper we show how measurement of the divergent nematic
susceptibility of an iron pnictide superconductor unambiguously distinguishes
an electronic nematic phase transition from a simple ferroelastic distortion.
These measurements also reveal an electronic nematic quantum phase transition
at the composition with optimal superconducting transition temperature.Comment: 8 pages, 8 figure
Conceptual Design of a Communication-Based Deep Space Navigation Network
As the need grows for increased autonomy and position knowledge accuracy to support missions beyond Earth orbit, engineers must push and develop more advanced navigation sensors and systems that operate independent of Earth-based analysis and processing. Several spacecraft are approaching this problem using inter-spacecraft radiometric tracking and onboard autonomous optical navigation methods. This paper proposes an alternative implementation to aid in spacecraft position fixing. The proposed method Network-Based Navigation technique takes advantage of the communication data being sent between spacecraft and between spacecraft and ground control to embed navigation information. The navigation system uses these packets to provide navigation estimates to an onboard navigation filter to augment traditional ground-based radiometric tracking techniques. As opposed to using digital signal measurements to capture inherent information of the transmitted signal itself, this method relies on the embedded navigation packet headers to calculate a navigation estimate. This method is heavily dependent on clock accuracy and the initial results show the promising performance of a notional system
- …