10,756 research outputs found

    Cocommutative coalgebras: homotopy theory and Koszul duality

    Full text link
    We extend a construction of Hinich to obtain a closed model category structure on all differential graded cocommutative coalgebras over an algebraically closed field of characteristic zero. We further show that the Koszul duality between commutative and Lie algebras extends to a Quillen equivalence between cocommutative coalgebras and formal coproducts of curved Lie algebras.Comment: 38 page

    High Dynamic Range RF Front End with Noise Cancellation and Linearization for WiMAX Receivers

    Get PDF
    This research deals with verification of the high dynamic range for a heterodyne radio frequency (RF) front end. A 2.6 GHz RF front end is designed and implemented in a hybrid microwave integrated circuit (HMIC) for worldwide interoperability for microwave access (WiMAX) receivers. The heterodyne RF front end consists of a low-noise amplifier (LNA) with noise cancellation, an RF bandpass filter (BPF), a downconverter with linearization, and an intermediate frequency (IF) BPF. A noise canceling technique used in the low-noise amplifier eliminates a thermal noise and then reduces the noise figure (NF) of the RF front end by 0.9 dB. Use of a downconverter with diode linearizer also compensates for gain compression, which increases the input-referred third-order intercept point (IIP3) of the RF front end by 4.3 dB. The proposed method substantially increases the spurious-free dynamic range (DRf) of the RF front end by 3.5 dB

    A detailed description of the uncertainty analysis for High Area Ratio Rocket Nozzle tests at the NASA Lewis Research Center

    Get PDF
    A preliminary uncertainty analysis has been performed for the High Area Ratio Rocket Nozzle test program which took place at the altitude test capsule of the Rocket Engine Test Facility at the NASA Lewis Research Center. Results from the study establish the uncertainty of measured and calculated parameters required for the calculation of rocket engine specific impulse. A generalized description of the uncertainty methodology used is provided. Specific equations and a detailed description of the analysis are presented. Verification of the uncertainty analysis model was performed by comparison with results from the experimental program's data reduction code. Final results include an uncertainty for specific impulse of 1.30 percent. The largest contributors to this uncertainty were calibration errors from the test capsule pressure and thrust measurement devices

    Electronic bandstructure and optical gain of lattice matched III-V dilute nitride bismide quantum wells for 1.55 μ\mum optical communication systems

    Full text link
    Dilute nitride bismide GaNBiAs is a potential semiconductor alloy for near- and mid-infrared applications, particularly in 1.55 μ\mum optical communication systems. Incorporating dilute amounts of Bismuth (Bi) into GaAs reduces the effective bandgap rapidly, while significantly increasing the spin-orbit-splitting energy. Additional incorporation of dilute amounts of Nitrogen (N) helps to attain lattice matching with GaAs, while providing a route for flexible bandgap tuning. Here we present a study of the electronic bandstructure and optical gain of the lattice matched GaNx_xBiy_yAs1xy_{1-x-y}/GaAs quaternary alloy quantum well (QW) based on the 16-band k\cdotp model. We have taken into consideration the interactions between the N and Bi impurity states with the host material based on the band anticrossing (BAC) and valence band anticrossing (VBAC) model. The optical gain calculation is based on the density matrix theory. We have considered different lattice matched GaNBiAs QW cases and studied their energy dispersion curves, optical gain spectrum, maximum optical gain and differential gain; and compared their performances based on these factors. The thickness and composition of these QWs were varied in order to keep the emission peak fixed at 1.55 μ\mum. The well thickness has an effect on the spectral width of the gain curves. On the other hand, a variation in the injection carrier density has different effects on the maximum gain and differential gain of QWs of varying thicknesses. Among the cases studied, we found that the 6.3 nm thick GaN3_3Bi5.17_{5.17}As91.83_{91.83} lattice matched QW was most suited for 1.55 μ\mum (0.8 eV) GaAs-based photonic applications.Comment: Accepted in AIP Journal of Applied Physic

    Scheme for direct measurement of a general two-qubit Hamiltonian

    Full text link
    The construction of two-qubit gates appropriate for universal quantum computation is of enormous importance to quantum information processing. Building such gates is dependent on accurate knowledge of the interaction dynamics between two qubit systems. This letter will present a systematic method for reconstructing the full two-qubit interaction Hamiltonian through experimental measures of concurrence. This not only gives a convenient method for constructing two qubit quantum gates, but can also be used to experimentally determine various Hamiltonian parameters in physical systems. We show explicitly how this method can be employed to determine the first and second order spin-orbit corrections to the exchange coupling in quantum dots.Comment: 4 Pages, 1 Figur

    First passage times and asymmetry of DNA translocation

    Full text link
    Motivated by experiments in which single-stranded DNA with a short hairpin loop at one end undergoes unforced diffusion through a narrow pore, we study the first passage times for a particle, executing one-dimensional brownian motion in an asymmetric sawtooth potential, to exit one of the boundaries. We consider the first passage times for the case of classical diffusion, characterized by a mean-square displacement of the form t \sim t, and for the case of anomalous diffusion or subdiffusion, characterized by a mean-square displacement of the form tγ \sim t^{\gamma} with 0<γ<10<\gamma<1. In the context of classical diffusion, we obtain an expression for the mean first passage time and show that this quantity changes when the direction of the sawtooth is reversed or, equivalently, when the reflecting and absorbing boundaries are exchanged. We discuss at which numbers of `teeth' NN (or number of DNA nucleotides) and at which heights of the sawtooth potential this difference becomes significant. For large NN, it is well known that the mean first passage time scales as N2N^2. In the context of subdiffusion, the mean first passage time does not exist. Therefore we obtain instead the distribution of first passage times in the limit of long times. We show that the prefactor in the power relation for this distribution is simply the expression for the mean first passage time in classical diffusion. We also describe a hypothetical experiment to calculate the average of the first passage times for a fraction of passage events that each end within some time tt^*. We show that this average first passage time scales as N2/γN^{2/\gamma} in subdiffusion.Comment: 10 pages, 4 figures We incorporated reviewers' suggestions from Physical Review E. We reformulated a few paragraphs in the introduction and further clarified the issue of the (a)symmetry of passage times. In the results section, we re-expressed the results in a form that manifest the important features. We also added a few references concerning anomalous diffusion. The look (but not the content) of figure 1 was also change

    Divergent nematic susceptibility in an iron arsenide superconductor

    Full text link
    Within the Landau paradigm of continuous phase transitions, ordered states of matter are characterized by a broken symmetry. Although the broken symmetry is usually evident, determining the driving force behind the phase transition is often a more subtle matter due to coupling between otherwise distinct order parameters. In this paper we show how measurement of the divergent nematic susceptibility of an iron pnictide superconductor unambiguously distinguishes an electronic nematic phase transition from a simple ferroelastic distortion. These measurements also reveal an electronic nematic quantum phase transition at the composition with optimal superconducting transition temperature.Comment: 8 pages, 8 figure

    Conceptual Design of a Communication-Based Deep Space Navigation Network

    Get PDF
    As the need grows for increased autonomy and position knowledge accuracy to support missions beyond Earth orbit, engineers must push and develop more advanced navigation sensors and systems that operate independent of Earth-based analysis and processing. Several spacecraft are approaching this problem using inter-spacecraft radiometric tracking and onboard autonomous optical navigation methods. This paper proposes an alternative implementation to aid in spacecraft position fixing. The proposed method Network-Based Navigation technique takes advantage of the communication data being sent between spacecraft and between spacecraft and ground control to embed navigation information. The navigation system uses these packets to provide navigation estimates to an onboard navigation filter to augment traditional ground-based radiometric tracking techniques. As opposed to using digital signal measurements to capture inherent information of the transmitted signal itself, this method relies on the embedded navigation packet headers to calculate a navigation estimate. This method is heavily dependent on clock accuracy and the initial results show the promising performance of a notional system
    corecore