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KLESHCHEV’S DECOMPOSITION NUMBERS AND
BRANCHING COEFFICIENTS IN THE FOCK SPACE

JOSEPH CHUANG, HYOHE MIYACHI, AND KAI MENG TAN

Abstract. We give combinatorial descriptions of some coefficients of

the canonical basis of the q-deformed Fock space representation of Uq(bsle)
and of some matrix entries for the action of the Chevellay generators
fr with respect to the canonical basis. These are q-analogues of results
of Kleshchev on decomposition numbers and branching coefficients for
symmetric groups and Schur algebras.

1. Introduction

Throughout we fix an integer e ≥ 2. Lascoux, Leclerc, and Thibon [7, 9]
used the representation theory of the quantum affine algebra Uq(ŝle) to in-
troduce for every pair of partitions λ and σ a polynomial dλσ(q) with integer
coefficients (which depends on e). They conjectured these polynomials to
be q-analogues of decomposition numbers for Hecke algebras and quantized
Schur algebras at complex e-th roots of unity. These conjectures were proved
by Ariki [1] and by Varagnolo-Vasserot [16] respectively, and these polyno-
mials are now often called q-decomposition numbers.

Leclerc’s lectures [8] are a good introduction to this subject as well as a
convenient reference for the results we need here.

In [6, Theorem 1.10], Kleshchev gave a combinatorial description in terms
of what he calls ‘latticed subsets’ of the decomposition numbers of symmet-
ric groups (i.e., multiplicities of simple modules Dµ in Specht modules Sλ)
in cases where the partition µ is obtained from λ by moving a single node.
He also provided a description in terms of ‘normal nodes’ of the branching
coefficient (i.e., the multiplicity of the simple module Dν in the restricted
simple module Dµ↓Sn−1) when ν is obtained from µ by removing a node
([6, Theorem 1.4]). This branching coefficient may also be described as the
multiplicity of the projective cover P (Dµ) in a direct sum decomposition of
the induced projective cover P (Dν)↑Sn . In this paper, we give analogues of
these results for the q-decomposition numbers. When we apply Ariki’s and
Varagnolo-Vasserot’s theorems, we then obtain the corresponding decompo-
sition numbers and branching coefficients for Hecke algebras and quantized
Schur algebras at complex e-th roots of unity.

This paper is organized as follows: in section 2, we introduce the back-
ground theory and obtain some useful preliminary results. In section 3, we
review the theory of sign sequences and set up the machinery necessary for
the proof of the main theorems of this paper. We then state and prove the
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main theorems in section 4, and finally conclude with an example illustrating
the main theorems.
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2. Background

2.1. Partitions. Let Pn be the set of partitions of a nonnegative integer n,
and let P =

⋃
n Pn be the set of all partitions. The standard dominance

ordering on Pn is denoted by D. We identify a partition λ = (λ1, λ2, . . . )
with its Young diagram{

(j, k) ∈ Z+ × Z+ | 1 ≤ k ≤ λj

}
.

The residue of a node (j, k) in a Young diagram µ is the residue class of
(k − j) modulo e. If (j, k) has residue r, we say that (j, k) is an r-node. If
in removing (j, k) from µ, we obtain a Young diagram λ then (j, k) is both
a removable r-node of µ and an indent r-node of λ.

2.2. The Fock space representation. The algebra Uq(ŝle) is the asso-
ciative algebra over C(q) with generators er, fr, kr, k−1

r (0 ≤ r ≤ e − 1),
d, d−1 subject to some relations (see, for example, [8, §4]). An important
Uq(ŝle)-module is the Fock space representation F [3, 14], which has a basis
{s(λ) | λ ∈ P} as a C(q)-vector space. In fact, F admits another action
by the Heisenburg algebra which commutes with the action of Uq(ŝle), and
these two actions in effect make F a Uq(ĝle)-module.

For our purposes an explicit description of the action of just the fr’s on
F will suffice.

Let λ be a partition with indent1 r-node (j, k), and write µ for the parti-
tion obtained from λ by adding (j, k). Let N(λ, µ) be the number of indent
r-nodes of λ that are situated to the right of (j, k) minus the number of
removable r-nodes of λ situated to the right of (j, k). We have

fr(s(λ)) =
∑

µ

qN(λ,µ)s(µ),

where the sum is over all Young diagrams µ obtained from λ by adding an
indent r-node.

In [9], Leclerc and Thibon introduced an involution x 7→ x on F , having
the following properties (among others):

a(q)x = a(q−1)x, and fr(x) = fr(x) (a ∈ C(q), x ∈ F).

There is a distinguished basis {G(σ) | σ ∈ P} of F having the following
characterization ([9, Theorem 4.1]):

1We are following the terminlogy used in [6] and [8]; Kleshchev has since used the term
addable nodes in more recent papers.
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(1) G(σ) ≡ s(σ) (mod qL), where L is the Z[q]-lattice in F generated
by {s(λ) | λ ∈ P}.

(2) G(σ) = G(σ).

This basis is in fact the canonical basis of F as a Uq(ĝle)-module in the sense
of [9].

Let 〈−,−〉 denote the inner product on F for which {s(λ) | λ ∈ P}
is orthonormal. Then the q-decomposition number dλσ(q) is defined as
〈G(σ), s(λ)〉, the coefficient of s(λ) in G(σ).

The q-decomposition numbers enjoy the following property:

Theorem 2.1 ([15, 3.1][8, Theorem 9, Proposition 11, Corollary 14]). We
have

dσσ(q) = 1,

dλσ(q) ∈ qN0[q] for all λ 6= σ.

Furthermore, dλσ(q) 6= 0 only if σ D λ and λ and σ have the same e-core.

The deepest part of this theorem is the positivity of the q-decomposition
numbers, which follows from Lusztig’s geometric approach to canonical
bases. We shall require another positivity property of the canonical ba-
sis of F . While it is a direct consequence of Lusztig’s work [11, 12] and
Schiffman’s solution [15] to Varagnolo-Vasserot’s conjecture [16], we could
not find a convenient reference so we briefly review the argument here.

Let U−
e be the generic Hall algebra of type A

(1)
e−1. It contains the negative

part of Uq(ŝle) as a proper subalgebra. Lusztig [11] defines a canonical basis
B of U−

e in terms of perverse sheaves.

Theorem 2.2 (Lusztig). For any two canonical basis elements b and b′ of
U−

e , the coefficients of the expansion of bb′ in terms of the canonical basis
belong to N0[q, q−1].

This result is stated explicitly by Lusztig [11, 11.5(a)], at least for the
canonical basis in the negative part of Uq(ŝle); the argument for the Hall
algebra is the same. To explain this we use the notation in the proof of
[16, 7.5]. The point is that the convolution ∗ is defined by Lusztig on the
categories Dss

GU
(EU )’s themselves. So the convolution product of simple

perverse sheaves on EU and EW is a direct sum of shifts of simple perverse
sheaves on EV . As the elements of B are defined (see, e.g., [16, 3.5]) as
Frobenius traces of simple perverse sheaves on various EU ’s, we get the
claim.

The Chevalley generators fr of the negative part of Uq(ŝle) are, via the
embedding into U−

e , elements of B (see, e.g. [16, 7.5]). Hence we have

Corollary 2.3. For any canonical basis element b ∈ B and any Chevalley
generator fr of U−

e , each coefficient of the expansion of frb in terms of the
canonical basis B belongs to N0[q, q−1].

Now Varagnolo and Vasserot [16, 6.2] described an action of the Hall
algebra U−

e on the Fock space F extending the action of the negative part
of Uq(ŝle), and their conjecture that

Bs(∅) = {G(λ) | λ ∈ P}
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was proved by Schiffmann [15]. We deduce the following positivity result.

Proposition 2.4. If we write fr(G(σ)) =
∑

ρ aρ(q)G(ρ), then aρ(q) ∈
N0[q, q−1] for all ρ. We also have aρ(q) = aρ(q−1).

Proof. For σ ∈ P choose bσ ∈ B such that bσs(∅) = G(σ). Then, by
Corollary 2.3 we can write

frbσ =
∑
m

cm(q)bm,

where cm(q) ∈ N0[q, q−1]. Since∑
m

cm(q)bms(∅) = frbσs(∅) = frG(σ)

and each bms(∅) = G(ρ) for some ρ, we are done with the first assertion.
The second assertion follows from the fact that fr(G(σ)) and G(ρ) are all
bar-invariant. �

2.3. Some other useful results. We collate together some results which
we shall require.

Theorem 2.5. [2, Theorem 1] Let λ = (λ1, λ2, . . . ) and µ = (µ1, µ2, . . . ) be
partitions.

(1) (Row removal) Suppose that λ1 + · · ·+ λr = µ1 + · · ·+ µr for some
r and let

λ(0) = (λ1, . . . , λr), µ(0) = (µ1, . . . , µr),

λ(1) = (λr+1, λr+2, . . . ), µ(1) = (µr+1, µr+2, . . . ).

Then dλµ(q) = dλ(0)µ(0)(q)dλ(1)µ(1)(q).
(2) (Column removal) Suppose that λ′

1 + · · · + λ′
r = µ′

1 + · · · + µ′
r for

some r and let

λ(0)′ = (λ′
1, . . . , λ

′
r), µ(0)′ = (µ′

1, . . . , µ
′
r),

λ(1)′ = (λ′
r+1, λ

′
r+2, . . . ), µ(1)′ = (µ′

r+1, µ
′
r+2, . . . ).

Then dλµ(q) = dλ(0)µ(0)(q)dλ(1)µ(1)(q).

The following lemma is clear.

Lemma 2.6. Suppose a1(q) + f1(q) = a2(q) + f2(q), with a1, a2 ∈ C[q, q−1],
a1(q−1) = a1(q), a2(q−1) = a2(q) and f1, f2 ∈ qC[q]. Then a1 = a2 and
f1 = f2.

Proposition 2.7. Suppose fr(G(λ)) =
∑

ν aν(q)G(ν), and 〈aµ(q)G(µ), s(λ̂)〉 6=
0 where λ̂ is the partition obtained from λ by adding an indent r-node ly-
ing on row b. Then µ is obtained from λ by adding k + 1 indent r-nodes,
on rows a0, a1, a2, . . . , ak say, and removing k removable r-nodes, on rows
b1, b2, . . . , bk say, (k ≥ 0) with

a0 < b1 < a1 < b2 < a2 · · · < bk < ak ≤ b.



DECOMPOSITION NUMBERS AND BRANCHING COEFFICIENTS 5

Proof. As 〈aµ(q)G(µ), s(λ̂)〉 6= 0, we have aµ(q), d
bλµ

(q) 6= 0, so that µ D λ̂ by
Theorem 2.1. Furthermore, 〈fr(G(λ)), s(µ)〉 6= 0 by Proposition 2.4. Since

〈fr(G(λ)), s(µ)〉 =
∑
eµ

d
eµλ(q)〈fr(s(µ̃)), s(µ)〉,

where the sum runs over all partition µ̃ obtained from µ by removing a
removable r-node, we have d

eµλ(q) 6= 0 for at least one such µ̃. Fix one such
µ̃, say obtained from µ by removing the r-node on row a. We have λ D µ̃

by Theorm 2.1, and together with µ D λ̂, we see that
j∑

i=1

λi ≥
j∑

i=1

µ̃i ≥
j∑

i=1

λi

whenever j < min(a, b) or j ≥ max(a, b), so that λi = µ̃i whenever i <
min(a, b) or i > max(a, b). Furthermore, if b < a, then

b∑
i=1

λi ≥
b∑

i=1

µ̃i ≥
b∑

i=1

λi + 1,

giving λb ≥ µ̃b ≥ λb +1, a contradiction. Thus b ≥ a. Furthermore, for each
a ≤ j < b, we have

∑j
i=a µ̃i + 1 ≥

∑j
i=a λi ≥

∑j
i=a µ̃i, which simplifies to

0 ≤
j∑

i=a

(λi − µ̃i) ≤ 1.

Hence, we conclude that µ̃ is obtained from λ by adding k indent nodes, on
rows a1, a2, . . . , ak say, and removing k removable nodes, on rows b1, b2, . . . , bk

say, with
a ≤ b1 < a1 < b2 < a2 < · · · < bk < ak ≤ b.

It remains to show all the removable and indent nodes involved have residue
r.

Let λ(i) = (λbi
, λbi+1, . . . , λai) and µ̃(i) = (µ̃bi

, µ̃bi+1, . . . , µ̃ai) for each
1 ≤ i ≤ k. Then since d

eµλ(q) 6= 0, we have d
eµ(i)λ(i)(q) 6= 0 for all i by row

removal theorem (Theorem 2.5(1)). Thus, for each i, µ̃(i) and λ(i) have the
same e-core by Theorem 2.1, and hence the nodes (bi, λbi

) and (ai, λai + 1)
have the same residue. As λ̂ is obtained from µ by adding indent nodes on
rows b1, b2, . . . , bk, b and removing removable nodes on rows a, a1, a2, . . . , ak,
and d

bλµ
(q) 6= 0, we can apply an argument similar to the above to conclude

that the nodes (bi, µbi
+ 1) and (ai−1, µai−1) have the same residue, where

bk+1 = b and a0 = a. But

(bi, µbi
+ 1) =

{
(bi, λbi

), if i ≤ k;
(b, λb + 1), if i = k + 1,

and

(ai−1, µai−1) =

{
(ai−1, λai−1+1), if i ≥ 2;
(a, µa), if i = 1.

Thus all the nodes involved have the same residue, which must be r as this
is the residue of (b, λb + 1) and (a, µa). �
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3. Sign sequences

In this section, we review the theory of sign sequences introduced by
Kleshchev in [6], and set up the machinery necessary for the proof of the
main theorems of next section.

Definition 3.1. Let T = (t1, . . . , tu) be a finite sequence with each tv ∈
{±1}. We call T a sign sequence.

For 0 ≤ i < j ≤ u+1, we denote the sign subsequence (ti+1, ti+2, . . . , tj−1)
of T by T j

i . (Thus, T u+1
0 = T .)

The set (of integers) associated to T j
i , denoted by S(T j

i ), is {i + 1, i +
2, . . . , j − 1}.

We also write |T | for
∑u

i=1 ti.

Note. Our notation T j
i equals the notation T (i+1, j−1) used by Kleshchev

in [6].

We pair the elements of S(T ) up using the following algorithm:
(1) v is paired with v + 1 whenever tv = 1 and tv+1 = −1;
(2) whenever v and w are as yet unpaired, with v < w, tv = 1 and

tw = −1, and v +1, v +2, . . . , w− 1 are all paired, we pair v with w.

Definition 3.2. Denote the sets of paired and unpaired v ∈ S(T ) by P (T )
and U(T ) respectively. Furthermore, for ∆ ∈ {S, P, U}, write ∆+(T ) for
{v ∈ ∆(T ) | tv = 1}, and similarly define ∆−(T ).

The pairing of elements of S(T ) induces an involution pT on P (T ).

Example. Let T = (1, 1,−1,−1,−1, 1,−1, 1). Then U−(T ) = {5}, U+(T ) =
{8}, P−(T ) = {3, 4, 7}, P+(T ) = {1, 2, 6}, and pT (1) = 4, pT (2) = 3,
pT (6) = 7.

We note the following easy consequences arising from this pairing:

Lemma 3.3.
(1) If v ∈ P+(T ) and v < w < pT (v), then w ∈ P (T ) with v < pT (w) <

pT (v).
(2) If v, w ∈ P+(T ) with v < w, then either v < w < pT (w) < pT (v) or

v < pT (v) < w < pT (w).
(3) For all v ∈ U−(T ) and for all w ∈ U+(T ), we have v < w.
(4) |T | = |U+(T )| − |U−(T )|.

Given a subsequence T j
i of T , we can also pair the elements of S(T j

i ) using
the same algorithm. We note that this process is just a ‘restriction’ of the
pairing of elements of S(T ). More precisely, we have

P (T j
i ) = {v ∈ P (T ) | i < v, pT (v) < j}.

Definition 3.4. We say T j
i is latticed if U−(T j

i ) = ∅ (equivalently, if S−(T j
i ) =

P−(T j
i )).

Note. The empty sign sequence is latticed.

Lemma 3.5. Let T = (t1, t2, . . . , tu) be a sign sequence, and suppose v ∈
S+(T ). Then v ∈ U+(T ) if and only if T u+1

v is latticed.
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Proof. If T u+1
v is latticed, then v has no pair in S(T ), i.e. v ∈ U+(T ).

Conversely, if v ∈ U+(T ), and w ∈ S−(T u+1
v ), then w ∈ P−(T ) by Lemma

3.3(3). Furthermore, by Lemma 3.3(1), v < pT (w), so that w ∈ P−(T u+1
v ).

�

Lemma 3.6. If T j
i is latticed, then T v

i is latticed for all v with i < v ≤ j.

Proof. If w ∈ S−(T v
i ), then w ∈ S−(T j

i ) = P−(T j
i ). Thus i < pT (w) < w <

v, so that w ∈ P−(T v
i ). �

Definition 3.7. A set A = {a1, a2, . . . , as} (a1 < a2 < · · · < as) is a latticed
subset for T j

i if the following conditions hold:

(1) A ⊆ S−(T j
i );

(2) T
ak+1
ak is latticed for all 0 ≤ k ≤ s (where a0 = i and as+1 = j).

We allow the possibility of s = 0 which corresponds to the case A = ∅.

Note. If w ∈ U−(T j
i ), then w ∈ U−(T l

k) for all i ≤ k < w < l ≤ j. Thus any
latticed subset for T j

i necessarily contains U−(T j
i ) as a subset.

Remark. Our definitions of latticed sign sequences and latticed subsets are
equivalent to those given in Definitions 1.2 and 1.8 of [6] respectively.

As an immediate consequence of Lemma 3.6, we have

Corollary 3.8. If A is a latticed subset for T j
i , then A∩S(T v

i ) is a latticed
subset for T v

i for all v with i < v ≤ j.

Proposition 3.9. Let A = {a1, a2, . . . , as} ⊆ S−(T j
i ) (a1 < a2 < · · · < as).

Then

A = A ∪
s⋃

k=0

U−(T ak+1
ak )

is a latticed subset for T j
i (where a0 = i and as+1 = j), and is the unique

minimal latticed subset for T j
i containing A.

We call A the closure of A for T j
i .

Proof. It is easy to see that A is a latticed subset for T j
i . Let B be a latticed

subset for T j
i containing A. If w ∈ U−(T ak+1

ak ), then w ∈ U−(T l2
l1

) for all
ak ≤ l1 < w < l2 ≤ ak+1; thus w ∈ B. This shows that A ⊆ B. �

Definition 3.10. Let N−(T ) denote the set of maximal elements of latticed
subsets for T , i.e.

N−(T ) = {v ∈ S−(T ) | v = max(A) for some latticed subset A for T}.
Lemma 3.11.

(1) We have v ∈ N−(T ) if and only if v ∈ S−(T ) and T u+1
v is latticed.

(2) If U−(T ) 6= ∅, then max(U−(T )) ∈ N−(T ). Moreover, w /∈ N−(T )
for all other w ∈ U−(T ).

(3) If x ∈ S(T ), then N−(T ) ∩ S(T u+1
x ) = N−(T u+1

x ).

Proof. For part (1), the forward direction is clear from definition; conversely,
if T u+1

v is latticed, then v is the maximal element of the closure of {v} in T .
Part (2) follows since U−(T ) is the closure of ∅ for T , while part (3) follows
immediately from part (1). �
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Given a latticed subset A for Tw
0 with w ∈ S+(T ), write Â for A ∪

U−(T u+1
w ). Then Â is a latticed subset for T . Note that, by Lemma 3.5, we

have Â = ∅ if and only if A = ∅ and w ∈ U+(T ).
Given a nonempty latticed subset B for T , write τ(B) for B \ {max(B)}.

Then τ(B) is a latticed subset for T
max(B)
0 by Corollary 3.8. Let

L+ = {(A,w) | A is a latticed subset for Tw
0 , w ∈ S+(T )}

\ {(∅, w) | w ∈ U+(T )},
L− = {(B, x) | B is a latticed subset for T x

0 , x ∈ N−(T )}.

Note that if (B, x) ∈ L−, then B∪{x} is a latticed subset for T ; in particular,
U−(T ) ⊆ B ∪ {x}, with equality if and only if

(B, x) = (τ(U−(T )),max(U−(T ))).

Proposition 3.12. Let α : L+ 7→ L−, (A,w) 7→ (τ(Â),max(Â)) and let
(B, x) ∈ L−. Then

α−1{(B, x)} = {(B ∪ {x}, w) | w ∈ U+(T ), w > x} ∪M,

where M = {(B ∩ S(Tw0
0 ), w0)} with w0 = max{y ∈ P+(T ) | pT (y) ∈

B ∪ {x} } unless B ∪ {x} = U−(T ), in which case, M = ∅.

Proof. Observe first that α(A,w) = (B, x) if and only if

Â = A ∪ U−(T u+1
w ) = B ∪ {x}.

If w ∈ U+(T ), then this condition reduces to A = B∪{x}, since U−(T u+1
w ) =

∅ by Lemma 3.5; thus, α(A,w) = (B, x) if and only if A = B ∪ {x} and
x < w. Furthermore, if α(A1, w1) = (B, x) = α(A2, w2) for some w1, w2 ∈
P+(T ) with w1 < w2, then pT (w2) > w2 > w1, so that pT (w2) ∈ Â2 \ Â1,
contradicting Â1 = B ∪ {x} = Â2. Thus, there exists at most one (A,w)
with w ∈ P+(T ) such that α(A,w) = (B, x). As pT (w) ∈ Â \ U−(T ) if
w ∈ P+(T ), we see that there does not exist (A,w) with w ∈ P+(T ) such
that α(A,w) = (B, x) if B ∪ {x} = U−(T ). It remains then to show that
α(A0, w0) = (B, x) whenever B ∪ {x} 6= U−(T ), where A0 = B ∩ S(Tw0

0 ).
By Corollary 3.8, A0 is a latticed subset of Tw0

0 . Since U(T pT (w0)
w0 ) = ∅ by

Lemma 3.3(1), we have

U−(T u+1
w0

) = {pT (w0)} ∪ U−(T u+1
pT (w0)).

Thus Â0 = A0 ∪ U−(T u+1
w0

) is the closure of A0 ∪ {pT (w0)} for T , and
since A0 ∪ {pT (w0)} ⊆ B ∪ {x}, we have Â0 ⊆ B ∪ {x} by Proposition
3.9. Conversely, if b ∈ B ∪ {x} \ A0, then b > w0. If b ∈ P−(T ), then
pT (b) ≤ w0 by maximality of w0, so that b ∈ U−(T u+1

w0
). On the other hand,

if b ∈ U−(T ), then certainly b ∈ U−(T u+1
w0

). Thus B∪{x}\A0 ⊆ U−(T u+1
w0

),
so that B ∪ {x} ⊆ A0 ∪ U−(T u+1

w0
) = Â0. Hence Â0 = B ∪ {x}. �

In the corollary below, we use the notation [k] to denote q1−k + q3−k +
· · ·+ qk−3 + qk−1 for k ∈ Z+.
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Corollary 3.13. Let (B, x) ∈ L−. Then∑
(A,w)∈α−1{(B,x)}

q1+2|A|+|T w
0 |−|T u+1

w | = [1 + |T u+1
x |]q1+2|B|+|T x

0 | − ε,

where ε = 0 unless B ∪ {x} = U−(T ), in which case, ε = q−|T |.

Proof. By Proposition 3.12, for each (A,w) ∈ α−1{(B, x)} with w ∈ U+(T ),
we have w > x and A = B ∪ {x}, so that

q1+2|A|+|T w
0 |−|T u+1

w | = q1+2|B|+|T x
0 |+|T u+1

x |−2|T u+1
w |.

Moreover, the only other possible element of α−1{(B, x)} is (B∩S(Tw0
0 ), w0)

where w0 = max{y ∈ P+(T ) | pT (y) ∈ B ∪ {x} }, and this contributes

q1+2|B|+|T x
0 |−|T u+1

x |

to the sum. Note further that if B ∪ {x} = U−(T ), then

q1+2|B|+|T x
0 |−|T u+1

x | = q−|T |.

The Corollary thus follows. �

4. Main results

Throughout this section, we fix a residue class r modulo e. We denote the
set of indent (resp. removable) r-nodes of a partition λ by I(λ) (resp. R(λ)).
We label the elements of I(λ)∪R(λ) as follows: I(λ)∪R(λ) = {c1, c2, . . . , cu}
such that if cv is situated to the left of cw then v < w. The partition λ
induces a sign sequence T (λ) = (t1, t2, . . . , tu) where tv = 1 if cv ∈ R(λ),
and tv = −1 if cv ∈ I(λ). If cv ∈ I(λ) (resp. R(λ)), we denote the partition
obtained from λ by adding (resp. removing) cv as λ↑v (resp. λ↓v).

In the statements of the main theorems below, λ ∈ P with T (λ) =
(t1, . . . , tu), and [k] = q1−k + q3−k + · · ·+ qk−3 + qk−1 for any k ∈ Z+.

Theorem 4.1. Suppose fr(G(λ)) =
∑

µ aµ(q)G(µ). Let v ∈ S−(T (λ)).
Then

aλ↑v(q) =

{
[1 + |T (λ)u+1

v |], if v ∈ N−(T (λ));
0, otherwise.

Furthermore, if ik ∈ S−(T (λ)), jk ∈ S+(T (λ)) for k = 1, 2, . . . , s with
i1 < j1 < i2 < j2 < · · · < is < js < v, then

aλ↑i1↓j1 ···↑is↓js↑v(q) = 0.

Remark. Note that aµ(q) is the q-analogue of branching coefficients. The
first assertion of Theorem 4.1 agrees with Theorem 1.4 of [6] upon special-
ization at q = 1 with e = p and λ p-regular, since a removable r-node cw of
λ is normal if and only if T (λ)u+1

w is latticed, so that cv is a normal node of
λ↑v if and only if v ∈ N−(T (λ)) by Lemma 3.11(1).

Theorem 4.2. Let v ∈ S−(T (λ)) and w ∈ S+(T (λ)) with v < w. Then

dλ↑v↓w,λ(q) =
∑
A

q1+2|A|+|T (λ)w
v |,

where the sum runs over all latticed subsets A for T (λ)w
v .
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Proof. We prove Theorems 4.1 and 4.2 simultaneously by induction. For
λ = ∅ ∈ P0, Theorem 4.2 holds trivially.

Let λ ∈ Pn and v ∈ S−(T (λ)), and suppose that Theorem 4.2 holds for all
partitions µ ∈ Pm with m ≤ n, and Theorem 4.1 holds for all x ∈ S−(T (λ))
with x > v. Let fr(G(λ)) =

∑
µ aµ(q)G(µ). Write T for T (λ)u+1

v .
By Proposition 2.7, Lemma 3.11(3) and induction hypothesis, we have

〈fr(G(λ)), s(λ↑v)〉 =
∑

µ

〈aµ(q)G(µ), s(λ↑v)〉

=
∑

x∈N−(T )∪{v}

〈aλ↑x(q)G(λ↑x), s(λ↑v)〉

= aλ↑v(q) +
∑

x∈N−(T )

[1 + |T (λ)u+1
x |]dλ↑v ,λ↑x(q).(∗)

On the other hand, we also have

〈fr(G(λ)), s(λ↑v)〉 = 〈fr(s(λ)), s(λ↑v)〉+
∑

w∈S+(T )

dλ↑v↓w,λ(q)〈fr(s(λ↑v↓w)), s(λ↑v)〉

= q−|T | +
∑

w∈S+(T )

∑
A

q1+2|A|+|T (λ)w
v |−|T (λ)u+1

w |,(1)

where A runs over all the latticed subsets for T (λ)w
v .

If v /∈ N−(T (λ)), then U−(T ) 6= ∅ by Lemma 3.11(1), so that ∅ is not
a latticed subset for Tw

v for all w ∈ U+(T ). By Corollary 3.13, (1) can be
rewritten as

(2)
∑

x∈N−(T )

∑
B

[1 + |T (λ)u+1
x |]q1+2|B|+|T (λ)x

v |,

where B runs over all the latticed subsets for T (λ)x
v . By induction hypothesis

and row removal theorem (Theorem 2.5(1)), we have∑
B

q1+2|B|+|T (λ)x
v | = dλ↑v ,λ↑x(q),

except possibly when x = max(N−(T )). Comparing (2) with (∗) and using
Lemma 2.6, we see that aλ↑v(q) = 0, and

∑
B q1+2|B|+|T (λ)x

v | = dλ↑v ,λ↑x(q)
for x ∈ max(N−(T )) as well.

If v ∈ N−(T (λ)), then U−(T ) = ∅ by Lemma 3.11(1), and hence ∅ is a
latticed subset for T (λ)w

v for all w ∈ U+(T ). Thus, by Corollary 3.13, (1)
can be rewritten as

q−|T |+
∑

w∈U+(T )

q1+|T (λ)w
v |−|T (λ)u+1

w |+
∑

x∈N−(T )

∑
B

[1+|T (λ)u+1
x |]q1+2|B|+|T (λ)x

v |

= [1 + |T |] +
∑

x∈N−(T )

∑
B

[1 + |T (λ)u+1
x |]q1+2|B|+|T (λ)x

v |,

where B runs over all the latticed subsets for T (λ)x
v . Using arguments similar

to the above, we get aλ↑v(q) = [1+|T |], and
∑

B q1+2|B|+|T (λ)x
v)| = dλ↑v ,λ↑x(q)

for all x ∈ N−(T ).



DECOMPOSITION NUMBERS AND BRANCHING COEFFICIENTS 11

Now, let ρ = λ↑i1↓j1 · · · ↑is↓js , with i1 < j1 < · · · < is < js < v. Then by
row removal theorem (Theorem 2.5(1)), we have

〈fr(G(λ)), s(ρ↑v))〉 =
∑

x∈S+(T )

dρ↑v↓x,λ(q)〈fr(s(ρ↑v↓x)), s(ρ↑v)〉

=
∑

x∈S+(T )

dρλ(q)dλ↑v↓x,λ(q)〈fr(s(λ↑v↓x)), s(λ↑v)〉

= dρλ(q)〈fr(G(λ)), s(λ↑v)〉

= dρλ(q)
∑

y∈N−(T )∪{v}

aλ↑y(q)dλ↑v ,λ↑y(q)

=
∑

y∈N−(T )∪{v}

aλ↑y(q)dρ↑v ,λ↑y(q)

= 〈
∑

y∈N−(T )∪{v}

aλ↑y(q)G(λ↑y), s(ρ↑v)〉.

This implies 〈aρ↑v(q)G(ρ↑v), s(ρ↑v)〉 = 0 by Proposition 2.4, so that aρ↑v(q) =
0. Thus Theorem 4.1 holds for v.

Now, suppose µ ∈ Pn+1. Note that the decomposition number dµ↑v↓w,µ(q)
can be obtained by induction hypothesis and Theorem 2.5, except when w
indexes the removable node in the top row of the Young diagram of µ and
v indexes the bottom indent node in the first column. For this case, let
λ = µ↓w, and we have seen above that

dµ↑v↓w,µ(q) = dλ↑v ,λ↑w(q)

=
∑
B

q1+2|B|+|T (λ)w
v |

=
∑
A

q1+2|A|+|T (µ)w
v |,

where A runs over the latticed subsets for T (µ)w
v . Thus Theorem 4.2 holds

for µ, and this completes our proof. �

Remark. Since both dλµ(q) and the decomposition numbers of symmetric
groups obey the row removal theorem, it follows from Theorem 4.2, Theorem
1.10 of [6] and Ariki’s theorem [16] that the decomposition number indexed
by partitions λ and µ (with µ p-regular) of the Hecke algebra at a complex p-
th root of unity coincide with that of the symmetric group in characteristic
p when λ is obtained from µ by alternately removing a removable node
and adding an indent node. This further implies that the corresponding
adjustment matrix entry indexed by such a pair of partitions is zero. As
Theorem 1.10 of [6] can be extended to an analogue for the Schur algebras,
the adjustment matrix entry, from the quantized Schur algebra at a complex
p-th root of unity to the classical Schur algebra in characteristic p, indexed
by such a pair of partitions (where µ need not be p-regular), is also zero.

We conclude this paper with an example illustrating the main theorems.

Example. Let e = 2, and λ = (5, 32, 1), and r = 0.
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0
0

0
0

0
Young diagram of λ = (5, 32, 1).

Then T (λ) = (−1,−1, 1,−1, 1). Let f0(G(λ)) =
∑

µ aµ(q)G(µ). Then

a(5,4,3,1)(q) = a(5,32,2)(q) = [2] = q + q−1,

a(5,32,12)(q) = a(5,4,22)(q) = a(5,4,2,12)(q) = 0,

and

d(42,3,1),(5,32,1)(q) = d(5,3,22),(5,32,1)(q) = q,

d(5,3,2,12),(5,32,1)(q) = q2,

d(4,32,2),(5,32,1)(q) = q + q3,

d(4,32,12),(5,32,1)(q) = q2 + q4.

Using row removal theorem (Theorem 2.5(1)), we further have

d(42,22),(5,32,1)(q) = q2, and d(42,2,12),(5,32,1)(q) = q3.
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