8,287 research outputs found

    LM radar reflectivity simulation Final report

    Get PDF
    Ultrasonic simulation of lunar module radar reflectivit

    Quantum Teleportation of Light

    Full text link
    Requirements for the successful teleportation of a beam of light, including its temporal correlations, are discussed. Explicit expressions for the degrees of first- and second-order optical coherence are derived. Teleportation of an antibunched photon stream illustrates our results.Comment: 4 pages, 5 figure

    A quantitative assessment of empirical magnetic field models at geosynchronous orbit during magnetic storms

    Get PDF
    [1] We evaluate the performance of recent empirical magnetic field models (Tsyganenko, 1996, 2002a, 2002b; Tsyganenko and Sitnov, 2005, hereafter referred to as T96, T02 and TS05, respectively) during magnetic storm times including both pre- and post-storm intervals. The model outputs are compared with GOES observations of the magnetic field at geosynchronous orbit. In the case of a major magnetic storm, the T96 and T02 models predict anomalously strong negative Bz at geostationary orbit on the nightside due to input values exceeding the model limits, whereas a comprehensive magnetic field data survey using GOES does not support that prediction. On the basis of additional comparisons using 52 storm events, we discuss the strengths and limitations of each model. Furthermore, we quantify the performance of individual models at predicting geostationary magnetic fields as a function of local time, Dst, and storm phase. Compared to the earlier models (T96 and T02), the most recent storm-time model (TS05) has the best overall performance across the entire range of local times, storm levels, and storm phases at geostationary orbit. The field residuals between TS05 and GOES are small (≤3 nT) compared to the intrinsic short time-scale magnetic variability of the geostationary environment even during non-storm conditions (∼24 nT). Finally, we demonstrate how field model errors may affect radiation belt studies when estimating electron phase space density

    Interpenetration as a Mechanism for Liquid-Liquid Phase Transitions

    Full text link
    We study simple lattice systems to demonstrate the influence of interpenetrating bond networks on phase behavior. We promote interpenetration by using a Hamiltonian with a weakly repulsive interaction with nearest neighbors and an attractive interaction with second-nearest neighbors. In this way, bond networks will form between second-nearest neighbors, allowing for two (locally) distinct networks to form. We obtain the phase behavior from analytic solution in the mean-field approximation and exact solution on the Bethe lattice. We compare these results with exact numerical results for the phase behavior from grand canonical Monte Carlo simulations on square, cubic, and tetrahedral lattices. All results show that these simple systems exhibit rich phase diagrams with two fluid-fluid critical points and three thermodynamically distinct phases. We also consider including third-nearest-neighbor interactions, which give rise to a phase diagram with four critical points and five thermodynamically distinct phases. Thus the interpenetration mechanism provides a simple route to generate multiple liquid phases in single-component systems, such as hypothesized in water and observed in several model and experimental systems. Additionally, interpenetration of many such networks appears plausible in a recently considered material made from nanoparticles functionalized by single strands of DNA.Comment: 12 pages, 9 figures, submitted to Phys. Rev.

    Storm‐time configuration of the inner magnetosphere: Lyon‐Fedder‐Mobarry MHD code, Tsyganenko model, and GOES observations

    Get PDF
    [1] We compare global magnetohydrodynamic (MHD) simulation results with an empirical model and observations to understand the magnetic field configuration and plasma distribution in the inner magnetosphere, especially during geomagnetic storms. The physics-based Lyon-Fedder-Mobarry (LFM) code simulates Earth\u27s magnetospheric topology and dynamics by solving the equations of ideal MHD. Quantitative comparisons of simulated events with observations reveal strengths and possible limitations and suggest ways to improve the LFM code. Here we present a case study that compares the LFM code to both a semiempirical magnetic field model and to geosynchronous measurements from GOES satellites. During a magnetic cloud event, the simulation and model predictions compare well qualitatively with observations, except during storm main phase. Quantitative statistical studies of the MHD simulation shows that MHD field lines are consistently under-stretched, especially during storm time (Dst \u3c −20 nT) on the nightside, a likely consequence of an insufficient representation of the inner magnetosphere current systems in ideal MHD. We discuss two approaches for improving the LFM result: increasing the simulation spatial resolution and coupling LFM with a ring current model based on drift physics (i.e., the Rice Convection Model (RCM)). We show that a higher spatial resolution LFM code better predicts geosynchronous magnetic fields (not only the average Bz component but also higher-frequency fluctuations driven by the solar wind). An early version of the LFM/RCM coupled code, which runs so far only for idealized events, yields a much-improved ring current, quantifiable by decreased field strengths at all local times compared to the LFM-only code

    Entangled-State Cycles of Atomic Collective-Spin States

    Full text link
    We study quantum trajectories of collective atomic spin states of NN effective two-level atoms driven with laser and cavity fields. We show that interesting ``entangled-state cycles'' arise probabilistically when the (Raman) transition rates between the two atomic levels are set equal. For odd (even) NN, there are (N+1)/2(N+1)/2 (N/2N/2) possible cycles. During each cycle the NN-qubit state switches, with each cavity photon emission, between the states (N/2,m>±N/2,m>)/2(|N/2,m>\pm |N/2,-m>)/\sqrt{2}, where N/2,m>|N/2,m> is a Dicke state in a rotated collective basis. The quantum number mm (>0>0), which distinguishes the particular cycle, is determined by the photon counting record and varies randomly from one trajectory to the next. For even NN it is also possible, under the same conditions, to prepare probabilistically (but in steady state) the Dicke state N/2,0>|N/2,0>, i.e., an NN-qubit state with N/2N/2 excitations, which is of particular interest in the context of multipartite entanglement.Comment: 10 pages, 9 figure

    Observation of the spontaneous vortex phase in the weakly ferromagnetic superconductor ErNi2_{2}B2_{2}C: A penetration depth study

    Full text link
    The coexistence of weak ferromagnetism and superconductivity in ErNi2_{2}B2% _{2}C suggests the possibility of a spontaneous vortex phase (SVP) in which vortices appear in the absence of an external field. We report evidence for the long-sought SVP from the in-plane magnetic penetration depth Δλ(T)\Delta \lambda (T) of high-quality single crystals of ErNi2_{2}B2_{2}C. In addition to expected features at the N\'{e}el temperature TNT_{N} = 6.0 K and weak ferromagnetic onset at TWFM=2.3T_{WFM}=2.3 K, Δλ(T)\Delta \lambda (T) rises to a maximum at Tm=0.45T_{m}=0.45 K before dropping sharply down to \sim 0.1 K. We assign the 0.45 K-maximum to the proliferation and freezing of spontaneous vortices. A model proposed by Koshelev and Vinokur explains the increasing Δλ(T)\Delta \lambda (T) as a consequence of increasing vortex density, and its subsequent decrease below TmT_{m} as defect pinning suppresses vortex hopping.Comment: 5 pages including figures; added inset to Figure 2; significant revisions to tex

    Fine Needle Aspiration Cytology of Metastatic Plasmacytoid Urothelial Carcinoma- Report of Four Cases Including a Case of Mixed Plasmacytoid and Micropapillary Morphology

    Get PDF
    Objectives: The aim of this study was to report a small series of fine-needle aspiration (FNA) cytology of the plasmacytoid variant of urothelial carcinoma (PVUC). Study Design: A computerized search of our laboratory information system was performed for the 5-year period between January 2008 and January 2013 to identify all FNA cases in which the corresponding surgical pathology cases were diagnosed as PVUC. Results: The 4 cases identified were from 2 men (aged 56 and 64 years) and 2 women (aged 72 and 46 years). The FNA smears demonstrated low-to-moderate cellularity and consisted predominantly of single and dyshesive, medium-sized tumor cells with eccentrically located nuclei and a moderate-to-abundant dense cytoplasm. The nuclei were oval with slightly irregular nuclear membranes and contained coarse granular chromatin with inconspicuous or small nucleoli. There was moderate nuclear variation in size. The nuclear-to-cytoplasmic ratio ranged from <1 to 3. Binucleation, cytoplasmic vacuoles, and perinuclear hof were occasionally seen. Conclusions: FNA cytology of PVUC shares features with plasma cell neoplasms, lobular carcinoma of the breast, and signet ring cell carcinoma of the stomach. Being aware of the patient's clinical history and the potential diagnostic pitfall of this rare variant of urothelial carcinoma is important for an accurate diagnosis on FNA biopsy
    corecore