research

Observation of the spontaneous vortex phase in the weakly ferromagnetic superconductor ErNi2_{2}B2_{2}C: A penetration depth study

Abstract

The coexistence of weak ferromagnetism and superconductivity in ErNi2_{2}B2% _{2}C suggests the possibility of a spontaneous vortex phase (SVP) in which vortices appear in the absence of an external field. We report evidence for the long-sought SVP from the in-plane magnetic penetration depth Δλ(T)\Delta \lambda (T) of high-quality single crystals of ErNi2_{2}B2_{2}C. In addition to expected features at the N\'{e}el temperature TNT_{N} = 6.0 K and weak ferromagnetic onset at TWFM=2.3T_{WFM}=2.3 K, Δλ(T)\Delta \lambda (T) rises to a maximum at Tm=0.45T_{m}=0.45 K before dropping sharply down to \sim 0.1 K. We assign the 0.45 K-maximum to the proliferation and freezing of spontaneous vortices. A model proposed by Koshelev and Vinokur explains the increasing Δλ(T)\Delta \lambda (T) as a consequence of increasing vortex density, and its subsequent decrease below TmT_{m} as defect pinning suppresses vortex hopping.Comment: 5 pages including figures; added inset to Figure 2; significant revisions to tex

    Similar works

    Full text

    thumbnail-image

    Available Versions

    Last time updated on 11/12/2019