1,802 research outputs found

    The Summer 2019-2020 Wildfires in East Coast Australia and Their Impacts on Air Quality and Health in New South Wales, Australia.

    Full text link
    The 2019–2020 summer wildfire event on the east coast of Australia was a series of major wildfires occurring from November 2019 to end of January 2020 across the states of Queensland, New South Wales (NSW), Victoria and South Australia. The wildfires were unprecedent in scope and the extensive character of the wildfires caused smoke pollutants to be transported not only to New Zealand, but also across the Pacific Ocean to South America. At the peak of the wildfires, smoke plumes were injected into the stratosphere at a height of up to 25 km and hence transported across the globe. The meteorological and air quality Weather Research and Forecasting with Chemistry (WRF-Chem) model is used together with the air quality monitoring data collected during the bushfire period and remote sensing data from the Moderate Resolution Imaging Spectroradiometer (MODIS) and Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation (CALIPSO) satellites to determine the extent of the wildfires, the pollutant transport and their impacts on air quality and health of the exposed population in NSW. The results showed that the WRF-Chem model using Fire Emission Inventory (FINN) from National Center for Atmospheric Research (NCAR) to simulate the dispersion and transport of pollutants from wildfires predicted the daily concentration of PM2.5 having the correlation (R2) and index of agreement (IOA) from 0.6 to 0.75 and 0.61 to 0.86, respectively, when compared with the ground-based data. The impact on health endpoints such as mortality and respiratory and cardiovascular diseases hospitalizations across the modelling domain was then estimated. The estimated health impact on each of the Australian Bureau of Statistics (ABS) census districts (SA4) of New South Wales was calculated based on epidemiological assumptions of the impact function and incidence rate data from the 2016 ABS and NSW Department of Health statistical health records. Summing up all SA4 census district results over NSW, we estimated that there were 247 (CI: 89, 409) premature deaths, 437 (CI: 81, 984) cardiovascular diseases hospitalizations and 1535 (CI: 493, 2087) respiratory diseases hospitalizations in NSW over the period from 1 November 2019 to 8 January 2020. The results are comparable with a previous study based only on observation data, but the results in this study provide much more spatially and temporally detailed data with regard to the health impact from the summer 2019–2020 wildfire

    Intelligent Insect–Computer Hybrid Robot: Installing Innate Obstacle Negotiation and Onboard Human Detection onto Cyborg Insect

    Get PDF
    Developing small mobile robots for Urban Search and Rescue (USAR) is a major challenge due to constraints in size and power required to perform vital functions such as obstacle navigation, victim detection, and wireless communication. Drawing upon the idea that insects’ locomotion can be controlled, what if we further utilize the insects’ intrinsic ability to avoid obstacles? Herein, a cockroach hybrid robot (≈ 1.5 cm height, 5.7 cm length) that implements the abovementioned functions is developed. It is tested in an arena with randomly placed obstacles, and a motion capture system is used to track the insect's position among the untracked obstacles. A navigation algorithm that uses an inertial measurement unit (IMU) is developed to heuristically predict the insect's situation and stimulate the insect to escape nearby obstacles. The utilization of insect's intrinsic locomotor ability and low-powered IMU reduces the onboard power load, allowing the addition of a human-detecting function. An image classification model enables the use of an onboard low-resolution infrared camera for human detection. Consequently, a single hybrid robot is established that includes locomotion control, autonomous navigation in obstructed areas, onboard human detection, and wireless communication, representing a significant step toward real USAR application

    Clinical significance of VEGF-A, -C and -D expression in esophageal malignancies

    Get PDF
    Vascular endothelial growth factors ( VEGF)- A, - C and - D are members of the proangiogenic VEGF family of glycoproteins. VEGF-A is known to be the most important angiogenic factor under physiological and pathological conditions, while VEGF-C and VEGF-D are implicated in the development and sprouting of lymphatic vessels, so called lymphangiogenesis. Local tumor progression, lymph node metastases and hematogenous tumor spread are important prognostic factors for esophageal carcinoma ( EC), one of the most lethal malignancies throughout the world. We found solid evidence in the literature that VEGF expression contributes to tumor angiogenesis, tumor progression and lymph node metastasis in esophageal squamous cell carcinoma ( SCC), and many authors could show a prognostic value for VEGF-assessment. In adenocarcinoma (AC) of the esophagus angiogenic properties are acquired in early stages, particularly in precancerous lesions like Barrett's dysplasia. However, VEGF expression fails to give prognostic information in AC of the esophagus. VEGF-C and VEGF-D were detected in SCC and dysplastic lesions, but not in normal mucosa of the esophagus. VEGF-C expression might be associated with lymphatic tumor invasion, lymph node metastases and advanced disease in esophageal SCC and AC. Therapeutic interference with VEGF signaling may prove to be a promising way of anti-angiogenic co-treatment in esophageal carcinoma. However, concrete clinical data are still pending

    Intron Dynamics in Ribosomal Protein Genes

    Get PDF
    The role of spliceosomal introns in eukaryotic genomes remains obscure. A large scale analysis of intron presence/absence patterns in many gene families and species is a necessary step to clarify the role of these introns. In this analysis, we used a maximum likelihood method to reconstruct the evolution of 2,961 introns in a dataset of 76 ribosomal protein genes from 22 eukaryotes and validated the results by a maximum parsimony method. Our results show that the trends of intron gain and loss differed across species in a given kingdom but appeared to be consistent within subphyla. Most subphyla in the dataset diverged around 1 billion years ago, when the “Big Bang” radiation occurred. We speculate that spliceosomal introns may play a role in the explosion of many eukaryotes at the Big Bang radiation

    Fatal Pseudomonas aeruginosa pneumonia in a previously healthy woman was most likely associated with a contaminated hot tub

    Get PDF
    Community-acquired pneumonia due to Pseudomonas aeruginosa in previously healthy individuals is a rare disease that is associated with high fatality. On 14 February 2010 a previously healthy 49-year-old woman presented to an emergency room with signs and symptoms of pneumonia, 2 days after returning from a spa holiday in a wellness hotel. Blood cultures and respiratory specimens grew P. aeruginosa. Despite adequate antimicrobial therapy, the patient died of septic multiorgan failure on day nine of hospitalization. On February 26, nine water samples were taken from the hotel facilities used by the patient: In the hot tub sample 37,000 colony-forming units of P. aeruginosa/100 ml were detected. Two of five individual colonies from the primary plate used for this hot tub water sample were found to be genetically closely related to the patients’ isolates. Results from PFGE, AFLP and MLST analysis allowed the two lung isolates gained at autopsy and the whirlpool bathtub isolates to be allocated into one cluster. The patient most likely acquired P. aeruginosa from the contaminated water in the hotel’s hot tub. The detection of P. aeruginosa in high numbers in a hot tub indicates massive biofilm formation in the bath circulation and severe deficiencies in hygienic maintenance. The increasing popularity of hot tubs in hotels and private homes demands increased awareness about potential health risks associated with deficient hygienic maintenance

    Single Tube, High Throughput Cloning of Inverted Repeat Constructs for Double-Stranded RNA Expression

    Get PDF
    BACKGROUND: RNA interference (RNAi) has emerged as a powerful tool for the targeted knockout of genes for functional genomics, system biology studies and drug discovery applications. To meet the requirements for high throughput screening in plants we have developed a new method for the rapid assembly of inverted repeat-containing constructs for the in vivo production of dsRNAs. METHODOLOGY/PRINCIPAL FINDINGS: The procedure that we describe is based on tagging the sense and antisense fragments with unique single-stranded (ss) tails which are then assembled in a single tube Ligase Independent Cloning (LIC) reaction. Since the assembly reaction is based on the annealing of unique complementary single stranded tails which can only assemble in one orientation, greater than ninety percent of the resultant clones contain the desired insert. CONCLUSION/SIGNIFICANCE: Our single-tube reaction provides a highly efficient method for the assembly of inverted repeat constructs for gene suppression applications. The single tube assembly is directional, highly efficient and readily adapted for high throughput applications

    A protease-based biosensor for the detection of schistosome cercariae

    Get PDF
    Parasitic diseases affect millions of people worldwide, causing debilitating illnesses and death. Rapid and cost-effective approaches to detect parasites are needed, especially in resource-limited settings. A common signature of parasitic diseases is the release of specific proteases by the parasites at multiple stages during their life cycles. To this end, we engineered several modular Escherichia coli and Bacillus subtilis whole-cell-based biosensors which incorporate an interchangeable protease recognition motif into their designs. Herein, we describe how several of our engineered biosensors have been applied to detect the presence and activity of elastase, an enzyme released by the cercarial larvae stage of Schistosoma mansoni. Collectively, S. mansoni and several other schistosomes are responsible for the infection of an estimated 200 million people worldwide. Since our biosensors are maintained in lyophilised cells, they could be applied for the detection of S. mansoni and other parasites in settings without reliable cold chain access

    Catalytic living ring-opening metathesis polymerization

    Get PDF
    In living ring-opening metathesis polymerization (ROMP), a transition-metal–carbene complex polymerizes ring-strained olefins with very good control of the molecular weight of the resulting polymers. Because one molecule of the initiator is required for each polymer chain, however, this type of polymerization is expensive for widespread use. We have now designed a chain-transfer agent (CTA) capable of reducing the required amount of metal complex while still maintaining full control over the living polymerization process. This new method introduces a degenerative transfer process to ROMP. We demonstrate that substituted cyclohexene rings are good CTAs, and thereby preserve the ‘living’ character of the polymerization using catalytic quantities of the metal complex. The resulting polymers show characteristics of a living polymerization, namely narrow molecular-weight distribution, controlled molecular weights and block copolymer formation. This new technique provides access to well- defined polymers for industrial, biomedical and academic use at a fraction of the current costs and significantly reduced levels of residual ruthenium catalyst
    corecore