6,984 research outputs found

    Molecfit: A general tool for telluric absorption correction II. Quantitative evaluation on ESO-VLT X-Shooter spectra

    Full text link
    Context: Absorption by molecules in the Earth's atmosphere strongly affects ground-based astronomical observations. The resulting absorption line strength and shape depend on the highly variable physical state of the atmosphere, i.e. pressure, temperature, and mixing ratio of the different molecules involved. Usually, supplementary observations of so-called telluric standard stars (TSS) are needed to correct for this effect, which is expensive in terms of telescope time. We have developed the software package molecfit to provide synthetic transmission spectra based on parameters obtained by fitting narrow ranges of the observed spectra of scientific objects. These spectra are calculated by means of the radiative transfer code LBLRTM and an atmospheric model. In this way, the telluric absorption correction for suitable objects can be performed without any additional calibration observations of TSS. Aims: We evaluate the quality of the telluric absorption correction using molecfit with a set of archival ESO-VLT X-Shooter visible and near-infrared spectra. Methods: Thanks to the wavelength coverage from the U to the K band, X-Shooter is well suited to investigate the quality of the telluric absorption correction with respect to the observing conditions, the instrumental set-up, input parameters of the code, the signal-to-noise of the input spectrum, and the atmospheric profiles. These investigations are based on two figures of merit, I_off and I_res, that describe the systematic offsets and the remaining small-scale residuals of the corrections. We also compare the quality of the telluric absorption correction achieved with moelcfit to the classical method based on a telluric standard star. (Abridged)Comment: Acc. by A&A; Software available via ESO: http://www.eso.org/sci/software/pipelines/skytools

    On a method to calculate conductance by means of the Wigner function: two critical tests

    Full text link
    We have implemented the linear response approximation of a method proposed to compute the electron transport through correlated molecules based on the time-independent Wigner function [P. Delaney and J. C. Greer, \prl {\bf 93}, 36805 (2004)]. The results thus obtained for the zero-bias conductance through quantum dot both without and with correlations demonstrate that this method is either quantitatively nor qualitatively able to provide a correct physical escription of the electric transport through nanosystems. We present an analysis indicating that the failure is due to the manner of imposing the boundary conditions, and that it cannot be simply remedied.Comment: 22 pages, 7 figur

    Bremsstrahlung from a microscopic model of relativistic heavy ion collisions

    Get PDF
    We compute bremsstrahlung arising from the acceleration of individual charged baryons and mesons during the time evolution of high-energy Au+Au collisions at the Relativistic Heavy Ion Collider using a microscopic transport model. We elucidate the connection between bremsstrahlung and charge stop- ping by colliding artificial pure proton on pure neutron nuclei. From the inten- sity of low energy bremsstrahlung, the time scale and the degree of stopping could be accurately extracted without measuring any hadronic observables. PACS: 25.75.-q, 13.85.Q

    The responses of central octavolateralis cells to moving sources

    Get PDF
    Müller HM, Fleck A, Bleckmann H. The responses of central octavolateralis cells to moving sources. Journal of Comparative Physiology A. 1996;179:455-471

    Applying the extended molecule approach to correlated electron transport: important insight from model calculations

    Full text link
    Theoretical approaches of electronic transport in correlated molecules usually consider an extended molecule, which includes, in addition to the molecule itself, parts of electrodes. In the case where electron correlations remain confined within the molecule, and the extended molecule is sufficiently large, the current can be expressed by means of Laudauer-type formulae. Electron correlations are embodied into the retarded Green function of a sufficiently large but isolated extended molecule, which represents the key quantity that can be accurately determined by means of ab initio quantum chemical calculations. To exemplify these ideas, we present and analyze numerical results obtained within full CI calculations for an extended molecule described by the interacting resonant level model. Based on them, we argue that for organic electrodes the transport properties can be reliably computed, because the extended molecule can be chosen sufficiently small to be tackled within accurate ab initio methods. For metallic electrodes, larger extended molecules have to be considered in general, but a (semi-)quantitative description of the transport should still be possible particularly in the typical cases where electron transport proceeds by off-resonant tunneling. Our numerical results also demonstrate that, contrary to the usual claim, the ratio between the characteristic Coulomb strength and the level width due to molecule-electrode coupling is not the only quantity needed to assess whether electron correlation effects are strong or weak

    Excitation function of energy density and partonic degrees of freedom in relativistic heavy ion collisions

    Get PDF
    We estimate the energy density epsilon pile-up at mid-rapidity in central Pb+Pb collisions from 2 200 GeV/nucleon. epsilon is decomposed into hadronic and partonic contributions. A detailed analysis of the collision dynamics in the framework of a microscopic transport model shows the importance of partonic degrees of freedom and rescattering of leading (di)quarks in the early phase of the reaction for Elab 30 GeV/nucleon. In Pb+Pb collisions at 160 GeV/nucleon the energy density reaches up to 4 GeV/fm3, 95% of which are contained in partonic degrees of freedom

    Molecfit: A general tool for telluric absorption correction. I. Method and application to ESO instruments

    Full text link
    Context: The interaction of the light from astronomical objects with the constituents of the Earth's atmosphere leads to the formation of telluric absorption lines in ground-based collected spectra. Correcting for these lines, mostly affecting the red and infrared region of the spectrum, usually relies on observations of specific stars obtained close in time and airmass to the science targets, therefore using precious observing time. Aims: We present molecfit, a tool for correcting for telluric absorption lines based on synthetic modelling of the Earth's atmospheric transmission. Molecfit is versatile and can be used with data obtained with various ground-based telescopes and instruments. Methods: Molecfit combines a publicly available radiative transfer code, a molecular line database, atmospheric profiles, and various kernels to model the instrument line spread function. The atmospheric profiles are created by merging a standard atmospheric profile representative of a given observatory's climate, of local meteorological data, and of dynamically retrieved altitude profiles for temperature, pressure, and humidity. We discuss the various ingredients of the method, its applicability, and its limitations. We also show examples of telluric line correction on spectra obtained with a suite of ESO Very Large Telescope (VLT) instruments. Results: Compared to previous similar tools, molecfit takes the best results for temperature, pressure, and humidity in the atmosphere above the observatory into account. As a result, the standard deviation of the residuals after correction of unsaturated telluric lines is frequently better than 2% of the continuum. Conclusion: Molecfit is able to accurately model and correct for telluric lines over a broad range of wavelengths and spectral resolutions. (Abridged)Comment: 18 pages, 13 figures, 5 tables, accepted for publication in Astronomy and Astrophysic

    Transport model analysis of particle correlations in relativistic heavy ion collisions at femtometer scales

    Full text link
    The pion source as seen through HBT correlations at RHIC energies is investigated within the UrQMD approach. We find that the calculated transverse momentum, centrality, and system size dependence of the Pratt-HBT radii RLR_L and RSR_S are reasonably well in line with experimental data. The predicted ROR_O values in central heavy ion collisions are larger as compared to experimental data. The corresponding quantity RO2−RS2\sqrt{R_O^{2}-R_S^{2}} of the pion emission source is somewhat larger than experimental estimates.Comment: 12 pages, 5 figures, to be published in PR
    • …
    corecore