869 research outputs found

    Entropy and information in neural spike trains: Progress on the sampling problem

    Full text link
    The major problem in information theoretic analysis of neural responses and other biological data is the reliable estimation of entropy--like quantities from small samples. We apply a recently introduced Bayesian entropy estimator to synthetic data inspired by experiments, and to real experimental spike trains. The estimator performs admirably even very deep in the undersampled regime, where other techniques fail. This opens new possibilities for the information theoretic analysis of experiments, and may be of general interest as an example of learning from limited data.Comment: 7 pages, 4 figures; referee suggested changes, accepted versio

    Looking to Score: The Dissociation of Goal Influence on Eye Movement and Meta-Attentional Allocation in a Complex Dynamic Natural Scene

    Get PDF
    Several studies have reported that task instructions influence eye-movement behavior during static image observation. In contrast, during dynamic scene observation we show that while the specificity of the goal of a task influences observers’ beliefs about where they look, the goal does not in turn influence eye-movement patterns. In our study observers watched short video clips of a single tennis match and were asked to make subjective judgments about the allocation of visual attention to the items presented in the clip (e.g., ball, players, court lines, and umpire). However, before attending to the clips, observers were either told to simply watch clips (non-specific goal), or they were told to watch the clips with a view to judging which of the two tennis players was awarded the point (specific goal). The results of subjective reports suggest that observers believed that they allocated their attention more to goal-related items (e.g. court lines) if they performed the goal-specific task. However, we did not find the effect of goal specificity on major eye-movement parameters (i.e., saccadic amplitudes, inter-saccadic intervals, and gaze coherence). We conclude that the specificity of a task goal can alter observer’s beliefs about their attention allocation strategy, but such task-driven meta-attentional modulation does not necessarily correlate with eye-movement behavior

    Intrinsic activity in the fly brain gates visual information during behavioral choices

    Get PDF
    The small insect brain is often described as an input/output system that executes reflex-like behaviors. It can also initiate neural activity and behaviors intrinsically, seen as spontaneous behaviors, different arousal states and sleep. However, less is known about how intrinsic activity in neural circuits affects sensory information processing in the insect brain and variability in behavior. Here, by simultaneously monitoring Drosophila's behavioral choices and brain activity in a flight simulator system, we identify intrinsic activity that is associated with the act of selecting between visual stimuli. We recorded neural output (multiunit action potentials and local field potentials) in the left and right optic lobes of a tethered flying Drosophila, while its attempts to follow visual motion (yaw torque) were measured by a torque meter. We show that when facing competing motion stimuli on its left and right, Drosophila typically generate large torque responses that flip from side to side. The delayed onset (0.1-1 s) and spontaneous switch-like dynamics of these responses, and the fact that the flies sometimes oppose the stimuli by flying straight, make this behavior different from the classic steering reflexes. Drosophila, thus, seem to choose one stimulus at a time and attempt to rotate toward its direction. With this behavior, the neural output of the optic lobes alternates; being augmented on the side chosen for body rotation and suppressed on the opposite side, even though the visual input to the fly eyes stays the same. Thus, the flow of information from the fly eyes is gated intrinsically. Such modulation can be noise-induced or intentional; with one possibility being that the fly brain highlights chosen information while ignoring the irrelevant, similar to what we know to occur in higher animals

    Network adaptation improves temporal representation of naturalistic stimuli in drosophila eye: II Mechanisms

    Get PDF
    Retinal networks must adapt constantly to best present the ever changing visual world to the brain. Here we test the hypothesis that adaptation is a result of different mechanisms at several synaptic connections within the network. In a companion paper (Part I), we showed that adaptation in the photoreceptors (R1-R6) and large monopolar cells (LMC) of the Drosophila eye improves sensitivity to under-represented signals in seconds by enhancing both the amplitude and frequency distribution of LMCs' voltage responses to repeated naturalistic contrast series. In this paper, we show that such adaptation needs both the light-mediated conductance and feedback-mediated synaptic conductance. A faulty feedforward pathway in histamine receptor mutant flies speeds up the LMC output, mimicking extreme light adaptation. A faulty feedback pathway from L2 LMCs to photoreceptors slows down the LMC output, mimicking dark adaptation. These results underline the importance of network adaptation for efficient coding, and as a mechanism for selectively regulating the size and speed of signals in neurons. We suggest that concert action of many different mechanisms and neural connections are responsible for adaptation to visual stimuli. Further, our results demonstrate the need for detailed circuit reconstructions like that of the Drosophila lamina, to understand how networks process information

    The CD14 functional gene polymorphism -260 C>T is not involved in either the susceptibility to Chlamydia trachomatis infection or the development of tubal pathology

    Get PDF
    BACKGROUND: The functional polymorphism -260 C>T in the LPS sensing TLR4 co-receptor CD14 gene enhances the transcriptional activity and results in a higher CD14 receptor density. Individuals carrying the T/T genotype also have significantly higher serum levels of soluble CD14. The T allele of this polymorphism has recently been linked to Chlamydia pneumoniae infection. We investigated the role of the CD14 -260 C>T polymorphism in the susceptibility to and severity (defined as subfertility and/or tubal pathology) of C. trachomatis infection in Dutch Caucasian women. METHODS: The different CD14 -260 C>T genotypes were assessed by PCR-based RFLP analysis in three cohorts: 1) A cohort (n = 576) of women attending a STD clinic, 2) a cohort (n = 253) of women with subfertility, and 3) an ethnically matched control cohort (n = 170). The following variables were used in the analysis: In cohort 1 the CT-DNA status, CT IgG serology status, self-reported symptoms and in cohort 2, the CT IgG serology status and the tubal status at laparoscopy. RESULTS: In the control cohort the CC, CT and TT genotype distribution was: 28.2%, 48.2%, and 23.5% respectively. No differences were found in the overall prevalence of CD14 -260 genotypes (28.1%, 50.7%, and 21.2%) in cohort 1 when compared to the control cohort. Also no differences were observed in women with or without CT-DNA, with or without serological CT responses, with or without symptoms, or in combinations of these three variables. In subfertile women with tubal pathology (cohort 2, n = 50) the genotype distribution was 28.0%, 48.0%, and 24.0% and in subfertile women without tubal pathology (n = 203), 27.6%, 49.3% and 23.2%. The genotype distribution was unchanged when CT IgG status was introduced in the analyses. CONCLUSION: The CD14 -260 C>T genotype distributions were identical in all three cohorts, showing that this polymorphism is not involved in the susceptibility to or severity of sequelae of C. trachomatis infection

    Getting Acquainted with Kant

    Get PDF
    My question here concerns whether Kant claims that experience has nonconceptual content, or whether, on his view, experience is essentially conceptual. However there is a sense in which this debate concerning the content of intuition is ill-conceived. Part of this has to do with the terms in which the debate is set, and part to do with confusion over the connection between Kant’s own views and contemporary concerns in epistemology and the philosophy of mind. However, I think much of the substance of the debate concerning Kant’s views on the content of experience can be salvaged by reframing it in terms of a debate about the dependence relations, if any, that exist between different cognitive capacities. Below, in Section 2, I clarify the notion of ‘content’ I take to be at stake in the interpretive debate. Section 3 presents reasons for thinking that intuition cannot have content in the relevant sense. I then argue, in Section 4, that the debate be reframed in terms of dependence. We should distinguish between Intellectualism, according to which all objective representation (understood in a particular way) depends on acts of synthesis by the intellect, and Sensibilism, according to which at least some forms of objective representation are independent of any such acts (or the capacity for such acts). Finally, in Section 5, I further elucidate the cognitive role of intuition. I articulate a challenge which Kant understands alethic modal considerations to present for achieving cognition, and argue that a version of Sensibilism that construes intuition as a form of acquaintance is better positioned to answer this challenge than Intellectualism
    • …
    corecore