166 research outputs found

    Memory in an aging molecular glass

    Full text link
    The dielectric susceptibility of the molecular liquid sorbitol below its calorimetric glass transition displays memory strikingly similar to that of a variety of glassy materials. During a temporary stop in cooling, the susceptibility changes with time, and upon reheating the susceptibility retraces these changes. To investigate the out-of-equilibrium state of the liquid as it displays this memory, the heating stage of this cycle is interrupted and the subsequent aging characterized. At temperatures above that of the original cooling stop, the liquid enters a state on heating with an effective age that is proportional to the duration of the stop, while at lower temperatures no effective age can be assigned and subtler behavior emerges. These results, which reveal differences with memory displayed by spin glasses, are discussed in the context of the liquid's energy landscape.Comment: 5 pages, 4 figures. Significant revisions made to tex

    Evolution of particle-scale dynamics in an aging clay suspension

    Full text link
    Multispeckle x-ray photon correlation spectroscopy was employed to characterize the slow dynamics of a colloidal suspension formed by highly-charged, nanometer-sized disks. At scattering wave vectors qq corresponding to interparticle length scales, the dynamic structure factor follows a form f(q,t)exp[(t/τ)βf(q,t) \sim \exp[-(t/\tau)^{\beta}], where β\beta \approx 1.5. The characteristic relaxation time τ\tau increases with the sample age tat_a approximately as τta1.8\tau \sim t_a^{1.8} and decreases with qq approximately as τq1\tau \sim q^{-1}. Such a compressed exponential decay with relaxation time that varies inversely with qq is consistent with recent models that describe the dynamics in disordered elastic media in terms of strain from random, local structural rearrangements. The amplitude of the measured decay in f(q,t)f(q,t) varies with qq in a manner that implies caged particle motion at short times. The decrease in the range of this motion and an increase in suspension conductivity with increasing tat_a indicate a growth in the interparticle repulsion as the mechanism for internal stress development implied by the models.Comment: 4 pages, includes 4 postscript figures; accepted for publication in Phys Rev Let

    Short Communication Effects of short chain fatty acid (SCFA) supplementation on performance and egg characteristics of old breeder hens

    Get PDF
    A study was conducted to determine the effect of supplementing the diet of breeder hens with a short-chain fatty acid (SCFA) premix, containing 509 g fatty acid salts/kg of which 285 g were calcium butyrate, on their eggshell characteristics and the hatching percentage of the eggs. One thousand six hundred 66-week old White Bovans laying breeder hens were used in this experiment. They were housed in eight identical pens, each containing 200 birds, and four pens were used per treatment. The SCFA premix was included at 1000 mg/kg in the treatment diet, and fed for a period of nine weeks. Responses were compared with an unsupplemented treatment. Supplementation started when the hens were 66 weeks old. From day 75 eggs were collected for the next seven weeks and the occurrence of cracked, dirty and misshapen eggs was recorded, and the hatching percentage of the eggs was determined. Eggshell strength was lower in eggs from the control (1.76 ± 0.05) than from the treatment group (2.07 ± 0.03). The percentage of eggs produced by the control group (68.6 ± 0.08) was significantly lower than that by the supplemented group (71.5 ± 0.15). Percentage of dirty, cracked and misshapen eggs, and the hatchability percentage of the control group (1.15 ± 0.03, 3.44 ± 0.05, 6.27 ± 0.03 and 88.93 ± 0.06, respectively) were also significantly lower than in the group receiving SCFA (0.47 ± 0.03, 2.21 ± 0.03, 3.81 ± 0.03 and 93.36 ± 0.05, respectively). It was concluded that dietary supplementation of SCFA to layer breeder hens from 66 weeks of age onwards improved eggshell strength, reduced the percentage of dirty, cracked and misshapen eggs and increased the hatching percentage of the eggs. The positive responses were suggested to be largely due to the butyrate in the SCFA. Keywords: Butyrate; SCFA; eggshell quality; hatching characteristics South African Journal of Animal Science Vol. 37 (3) 2007: pp.158-16

    Dynamics of the Eukaryotic Replicative Helicase at Lagging-Strand Protein Barriers Support the Steric Exclusion Model

    Get PDF
    Progression of DNA replication depends on the ability of the replisome complex to overcome nucleoprotein barriers. During eukaryotic replication, the CMG helicase translocates along the leading-strand template and unwinds the DNA double helix. While proteins bound to the leading-strand template efficiently block the helicase, the impact of lagging-strand protein obstacles on helicase translocation and replisome progression remains controversial. Here, we show that CMG and replisome progressions are impaired when proteins crosslinked to the lagging-strand template enhance the stability of duplex DNA. In contrast, proteins that exclusively interact with the lagging-strand template influence neither the translocation of isolated CMG nor replisome progression in Xenopus egg extracts. Our data imply that CMG completely excludes the lagging-strand template from the helicase central channel while unwinding DNA at the replication fork, which clarifies how two CMG helicases could freely cross one another during replication initiation and termination

    Wheat and hazelnut inspection with impact acoustics time-frequency patterns

    Get PDF
    Kernel damage caused by insects and fungi is one of the most common reason for poor flour quality. Cracked hazelnut shells are prone to infection by cancer producing mold. We propose a new adaptive time-frequency classification procedure for detecting cracked hazelnut shells and damaged wheat kernels using impact acoustic emissions recorded by dropping wheat kernels or hazelnut shells on a steel plate. The proposed algorithm is based on a flexible local discriminant bases (F-LDB) procedure. The F-LDB method combines local cosine packet analysis and a frequency axis clustering approach which supports individual time and frequency band adaptation. Discriminant features are extracted from the adaptively segmented acoustic signal, sorted according to a Fisher class separability criterion, post processed by principal component analysis and fed to linear discriminant. We describe experimental results that establish the superior performance of the proposed approach when compared with prior techniques reported in the literature or used in the field. Our approach achieved classification accuracy in paired separation of undamaged wheat kernels from IDK, Pupae and Scab damaged kernels with 96%, 82% and 94%. For hazelnuts the accuracy was 97.1%

    Identification of damaged wheat kernels and cracked-shell hazelnuts with impact acoustics time-frequency patterns

    Get PDF
    A new adaptive time-frequency (t-f) analysis and classification procedure is applied to impact acoustic signals for detecting hazelnuts with cracked shells and three types of damaged wheat kernels. Kernels were dropped onto a steel plate, and the resulting impact acoustic signals were recorded with a PC-based data acquisition system. These signals were segmented with a flexible local discriminant bases (F-LDB) procedure in the time-frequency plane to extract discriminative patterns between damaged and undamaged food kernels. The F-LDB procedure requires no prior knowledge of the relevant time or frequency indices of the impact acoustics signals for classification. The method automatically finds all crucial time-frequency indices from the training data by combining local cosine packet analysis and a frequency axis clustering approach, which supports individual time and frequency band adaptation. Discriminant features are extracted from the adaptively segmented acoustic signal, sorted according to a Fisher class separability criterion, post-processed by principal component analysis, and fed to a linear discriminant classifier. Experimental results establish the superior performance of the proposed approach when compared to prior techniques reported in the literature or used in the field. The new approach separated damaged wheat kernels (IDK, pupal, and scab) from undamaged wheat kernels with 96%, 82%, and 94% accuracy, respectively. It also separated cracked-shell hazelnuts from those with undamaged shells with 97.1% accuracy. The adaptation capability of the algorithm to the time-frequency patterns of signals makes it a universal method for food kernel inspection that can resist the impact acoustic variability between different kernel and damage types. 2008 American Society of Agricultural and Biological Engineers

    Structure of nanoparticles embedded in micellar polycrystals

    Full text link
    We investigate by scattering techniques the structure of water-based soft composite materials comprising a crystal made of Pluronic block-copolymer micelles arranged in a face-centered cubic lattice and a small amount (at most 2% by volume) of silica nanoparticles, of size comparable to that of the micelles. The copolymer is thermosensitive: it is hydrophilic and fully dissolved in water at low temperature (T ~ 0{\deg}C), and self-assembles into micelles at room temperature, where the block-copolymer is amphiphilic. We use contrast matching small-angle neuron scattering experiments to probe independently the structure of the nanoparticles and that of the polymer. We find that the nanoparticles do not perturb the crystalline order. In addition, a structure peak is measured for the silica nanoparticles dispersed in the polycrystalline samples. This implies that the samples are spatially heterogeneous and comprise, without macroscopic phase separation, silica-poor and silica-rich regions. We show that the nanoparticle concentration in the silica-rich regions is about tenfold the average concentration. These regions are grain boundaries between crystallites, where nanoparticles concentrate, as shown by static light scattering and by light microscopy imaging of the samples. We show that the temperature rate at which the sample is prepared strongly influence the segregation of the nanoparticles in the grain-boundaries.Comment: accepted for publication in Langmui

    Frustrated 3-Dimensional Quantum Spin Liquid in CuHpCl

    Full text link
    Inelastic neutron scattering measurements are reported for the quantum antiferromagnetic material Cu_2(C_5H_12N_2)_2Cl_4 (CuHpCl). The magnetic excitation spectrum forms a band extending from 0.9 meV to 1.4 meV. The spectrum contains two modes that disperse throughout the a-c plane of the monoclinic unit cell with less dispersion along the unique b-axis. Simple arguments based on the measured dispersion relations and the crystal structure show that a spin ladder model is inappropriate for describing CuHpCl. Instead, it is proposed that hydrogen bond mediated exchange interactions between the bi-nuclear molecular units yield a three-dimensional interacting spin system with a recurrent triangular motif similar to the Shastry-Sutherland Model (SSM). Model independent analysis based on the first moment sum rule shows that at least four distinct spin pairs are strongly correlated and that two of these, including the dimer bond of the corresponding SSM, are magnetically frustrated. These results show that CuHpCl should be classified as a frustration induced three dimensional quantum spin liquid.Comment: 13 pages, 17 figures (Color) ReSubmitted to Phys. Rev. B 9/21/2001 resubmission has new content email comments to [email protected] or [email protected]

    Visualization of direct and diffusion-assisted RAD51 nucleation by full-length human BRCA2 protein

    Get PDF
    Homologous recombination (HR) is essential for error-free repair of DNA double-strand breaks, perturbed replication forks (RFs), and post-replicative single-stranded DNA (ssDNA) gaps. To initiate HR, the recombination mediator and tumor suppressor protein BRCA2 facilitates nucleation of RAD51 on ssDNA prior to stimulation of RAD51 filament growth by RAD51 paralogs. Although ssDNA binding by BRCA2 has been implicated in RAD51 nucleation, the function of double-stranded DNA (dsDNA) binding by BRCA2 remains unclear. Here, we exploit single-molecule (SM) imaging to visualize BRCA2-mediated RAD51 nucleation in real time using purified proteins. We report that BRCA2 nucleates and stabilizes RAD51 on ssDNA either directly or through an unappreciated diffusion-assisted delivery mechanism involving binding to and sliding along dsDNA, which requires the cooperative action of multiple dsDNA-binding modules in BRCA2. Collectively, our work reveals two distinct mechanisms of BRCA2-dependent RAD51 loading onto ssDNA, which we propose are critical for its diverse functions in maintaining genome stability and cancer suppression
    corecore