1,357 research outputs found

    Calibration of the visible and near-infrared channels of the NOAA-9 AVHRR using high-altitude aircraft measurements from August 1985 and October 1986

    Get PDF
    Visible and near infrared wavelength sensors mounted on operational satellites now in use do not have onboard absolute calibration devices. One means of establishing an in-orbit calibration for a satellite sensor is to make simultaneous measurement of a bright, relatively uniform scene along the satellite view vector from a calibrated instrument on board a high altitude aircraft. Herein, aircraft data were recorded over White Sands, New Mexico at satellite overpass time. Comparison of the coincident aircraft and orbiting satellite data for the visible and near infrared wavelength channels of the NOAA-9 Advanced Very High Resolution Radiometer shows that the calibration of the visible channel was unchanged from prelaunch values, but that the near infrared channel has degraded 6 percent by Aug. 1985. By Oct. 1986 the visible channel had degraded 13 percent and the near infrared channel had degraded 19 percent

    Visible and near-infrared channel calibration of the GOES-6 VISSR using high-altitude aircraft measurements

    Get PDF
    Present and future visible and near-infrared wavelength sensors mounted on operational satellites do not have on-board absolute calibration devices. One means of establishing an in-orbit calibration for a satellite sensor is to make simultaneous measurements of a bright, relatively uniform scene along the satellite view vector from a calibrated instrument on board a high altitude aircraft. Aircraft data were recorded over White Sands, New Mexico, and the coincident aircraft and orbiting satellite data is compared for the visible and near-infrared wavelength channel of the GOES-6 Visible Infrared Spin-Scan Radiometer

    Assessment of Thematic Mapper band-to-band registration by the block correlation method

    Get PDF
    Rectangular blocks of pixels from one band image were statistically correlated against blocks centered on identical pixels from a second band image. The block pairs were shifted in pixel increments both vertically and horizontally with respect to each other and the correlation coefficient to the maximum correlation was taken as the best estimate of registration error for each block pair. For the band combinations of the Arkansas scene studied, the misregistration of TM spectral bands within the noncooled focal plane lie well within the 0.2 pixel target specification. Misregistration between the middle IR bands is well within this specification also. The thermal IR band has an apparent misregistration with TM band 7 of approximately 3 pixels in each direction. The TM band 3 has a misregistration of approximately 0.2 pixel in the across-scan direction and 0.5 pixel in the along-scan direction, with both TM bands 5 and 7

    Calibration of the visible and near-infrared channels of the LANDSAT-5 Thematic Mapper using high-altitude aircraft measurements

    Get PDF
    Visible near-infrared sensors mounted on operational satellites now in use do not have on-board full aperture absolute calibration devices. One means of establishing an in-orbit calibration for a satellite sensor is to make simultaneous measurements of a bright, uniform scene along the satellite view vector from a calibrated instrument on board a high altitude aircraft. In the work reported here, aircraft data were recorded over White Sands, New Mexico at satellite overpass time for the LANDSAT-5 Thematic Mapper (TM). A comparison of the coincident aircraft and orbiting satellite data showed the radiometric gain for TM channel 1 had degraded 4.7 percent by August 28, 1985; gains for TM channels 2 and 3 were within 1 percent of prelaunch values

    Thematic Mapper image quality: Preliminary results

    Get PDF
    Based on images analyzed so far, the band to band registration accuracy of the thematic mapper is very good. For bands within the same focal plane, the mean misregistrations are well within the specification, 0.2 pixels. For bands between the cooled and uncooled focal planes, there is a consistent mean misregistration of 0.5 pixels along-scan and 0.2-0.3 pixels across-scan. It exceeds the permitted 0.3 pixels for registration of bands between focal planes. If the mean misregistrations were removed by the data processing software, an analysis of the standard deviation of the misregistration indicates all band combinations would meet the registration specifications except for those including the thermal band. Analysis of the periodic noise in one image indicates a noise component in band 1 with a spatial frequency equivalent to 3.2 pixels in the along-scan direction

    Optical and Infrared Spectroscopy

    Get PDF
    Contains reports on three research projects.Joint Services Electronics Programs (U. S. Army, U. S. Navy, and U. S. Air Force) under Contract DA 36-039-AMC-03200(E

    Citizens observatories for effective Earth observations: the WeSenseIt approach

    Get PDF
    The WeSenseIt project defines citizen observatories as “A method, an environment and an infrastructure supporting an information ecosystem for communities and citizens, as well as emergency operators and policymakers, for discussion, monitoring and intervention on situations, places and events” . A collaborative approach has been taken to develop solutions that involve an exchange of information and expertise from all participants and where the focus is on arriving at practical solutions with a clear vision and direction. This has created a shared ownership scheme, and shifts power to the process itself rather than remaining within authorities, developers or decision-makers. The project’s emphasis is on delivering highly innovative technologies to support citizens, communities and authorities in developing a real-time situation awareness while ensuring all stakeholders play their part. Implementation has been through a combination of crowdsourcing, custom applications and dedicated web portals designed to foster collaboration, and which has created a shared knowledge base that facilitates decision-making processes and engages with communities. Data is captured via innovative sensors that are used directly by citizens, crowdsourcing from social networks (or by collective intelligence)
    corecore