610 research outputs found

    Automatic mapping of linear woody vegetation features in agricultural landscapes using very high resolution imagery

    Get PDF
    Cataloged from PDF version of article.Automatic mapping and monitoring of agricultural landscapes using remotely sensed imagery has been an important research problem. This paper describes our work on developing automatic methods for the detection of target landscape features in very high spatial resolution images. The target objects of interest consist of linear strips of woody vegetation that include hedgerows and riparian vegetation that are important elements of the landscape ecology and biodiversity. The proposed framework exploits the spectral, textural, and shape properties of objects using hierarchical feature extraction and decision-making steps. First, a multifeature and multiscale strategy is used to be able to cover different characteristics of these objects in a wide range of landscapes. Discriminant functions trained on combinations of spectral and textural features are used to select the pixels that may belong to candidate objects. Then, a shape analysis step employs morphological top-hat transforms to locate the woody vegetation areas that fall within the width limits of an acceptable object, and a skeletonization and iterative least-squares fitting procedure quantifies the linearity of the objects using the uniformity of the estimated radii along the skeleton points. Extensive experiments using QuickBird imagery from three European Union member states show that the proposed algorithms provide good localization of the target objects in a wide range of landscapes with very different characteristics

    Growing Information System: New Vision in Integration of Information System Into Organization

    Full text link
    Since organization change from stable to emergent condition, information system (IS) as part oforganization should have capability to follow the changes of requirement from the functional purposes andinteractivities with the users. Need of new strategy in IS development methodology is urgent. Integration of ISand organization could be seen as new vision and growing IS could be the new paradigm in IS developmentmethodology. The research conducted concludes that growing IS could be developed using role and task asorganic constructor. This paper presents theoretical approach leads to requirement of growing IS model (GiSM)

    Characterization of thylakoid lipid membranes from cyanobacteria and higher plants by molecular dynamics simulations

    Get PDF
    AbstractThe thylakoid membrane is mainly composed of non-common lipids, so called galactolipids. Despite the importance of these lipids for the function of the photosynthetic reaction centers, the molecular organization of these membranes is largely unexplored. Here we use multiscale molecular dynamics simulations to characterize the thylakoid membrane of both cyanobacteria and higher plants. We consider mixtures of up to five different galactolipids plus phosphatidylglycerol to represent these complex membranes. We find that the different lipids generally mix well, although nanoscale heterogeneities are observed especially in case of the plant membrane. The fluidity of the cyanobacterial membrane is markedly reduced compared to the plant membrane, even considering elevated temperatures at which thermophilic cyanobacteria are found. We also find that the plant membrane more readily undergoes a phase transformation to an inverted hexagonal phase. We furthermore characterized the conformation and dynamics of the cofactors plastoquinone and plastoquinol, revealing of the fast flip-flop rates for the non-reduced form. Together, our results provide a molecular view on the dynamical organization of the thylakoid membrane

    Structural characterization of supramolecular hollow nanotubes with atomistic simulations and SAXS

    Get PDF
    Self-assembled nanostructures arise when building blocks spontaneously organize into ordered aggregates that exhibit different properties compared to the disorganized monomers. Here, we study an amphiphilic cyanine dye (C8S3) that is known to self-assemble into double-walled, hollow, nanotubes with interesting optical properties. The molecular packing of the dyes inside the nanotubes, however, remains elusive. To reveal the structural features of the C8S3 nanotubes, we performed atomistic Molecular Dynamics simulations of preformed bilayers and nanotubes. We find that different packing arrangements lead to stable structures, in which the tails of the C8S3 molecules are interdigitated. Our results are verified by SAXS experiments. Together our data provide a detailed structural characterization of the C8S3 nanotubes. Furthermore, our approach was able to resolve the ambiguity inherent from cryo-TEM measurements in calculating the wall thickness of similar systems. The insights obtained are expected to be generally useful for understanding and designing other supramolecular assemblies

    Sequential Voxel-Based Leaflet Segmentation of Complex Lipid Morphologies

    Get PDF
    [Image: see text] As molecular dynamics simulations increase in complexity, new analysis tools are necessary to facilitate interpreting the results. Lipids, for instance, are known to form many complicated morphologies, because of their amphipathic nature, becoming more intricate as the particle count increases. A few lipids might form a micelle, where aggregation of tens of thousands could lead to vesicle formation. Millions of lipids comprise a cell and its organelle membranes, and are involved in processes such as neurotransmission and transfection. To study such phenomena, it is useful to have analysis tools that understand what is meant by emerging entities such as micelles and vesicles. Studying such systems at the particle level only becomes extremely tedious, counterintuitive, and computationally expensive. To address this issue, we developed a method to track all the individual lipid leaflets, allowing for easy and quick detection of topological changes at the mesoscale. By using a voxel-based approach and focusing on locality, we forego costly geometrical operations without losing important details and chronologically identify the lipid segments using the Jaccard index. Thus, we achieve a consistent sequential segmentation on a wide variety of (lipid) systems, including monolayers, bilayers, vesicles, inverted hexagonal phases, up to the membranes of a full mitochondrion. It also discriminates between adhesion and fusion of leaflets. We show that our method produces consistent results without the need for prefitting parameters, and segmentation of millions of particles can be achieved on a desktop machine

    LION/web:a web-based ontology enrichment tool for lipidomic data analysis

    Get PDF
    Background: A major challenge for lipidomic analyses is the handling of the large amounts of data and the translation of results to interpret the involvement of lipids in biological systems. Results: We built a new lipid ontology (LION) that associates &gt; 50,000 lipid species to biophysical, chemical, and cell biological features. By making use of enrichment algorithms, we used LION to develop a web-based interface (LION/web, www.lipidontology.com) that allows identification of lipid-associated terms in lipidomes. LION/web was validated by analyzing a lipidomic dataset derived from well-characterized sub-cellular fractions of RAW 264.7 macrophages. Comparison of isolated plasma membranes with the microsomal fraction showed a significant enrichment of relevant LION-terms including "plasma membrane", "headgroup with negative charge", "glycerophosphoserines", "above average bilayer thickness", and "below average lateral diffusion". A second validation was performed by analyzing the membrane fluidity of Chinese hamster ovary cells incubated with arachidonic acid. An increase in membrane fluidity was observed both experimentally by using pyrene decanoic acid and by using LION/web, showing significant enrichment of terms associated with high membrane fluidity ("above average", "very high", and "high lateral diffusion" and "below average transition temperature"). Conclusions: The results demonstrate the functionality of LION/web, which is freely accessible in a platform-independent way.</p

    Charge-dependent interactions of monomeric and filamentous actin with lipid bilayers

    Get PDF
    The cytoskeletal protein actin polymerizes into filaments that are essential for the mechanical stability of mammalian cells. In vitro experiments showed that direct interactions between actin filaments and lipid bilayers are possible and that the net charge of the bilayer as well as the presence of divalent ions in the buffer play an important role. In vivo, colocalization of actin filaments and divalent ions are suppressed, and cells rely on linker proteins to connect the plasma membrane to the actin network. Little is known, however, about why this is the case and what microscopic interactions are important. A deeper understanding is highly beneficial, first, to obtain understanding in the biological design of cells and, second, as a possible basis for the building of artificial cortices for the stabilization of synthetic cells. Here, we report the results of coarse-grained molecular dynamics simulations of monomeric and filamentous actin in the vicinity of differently charged lipid bilayers. We observe that charges on the lipid head groups strongly determine the ability of actin to adsorb to the bilayer. The inclusion of divalent ions leads to a reversal of the binding affinity. Our in silico results are validated experimentally by reconstitution assays with actin on lipid bilayer membranes and provide a molecular-level understanding of the actin-membrane interaction.</p
    corecore