365 research outputs found

    Morphological and Structural Aspects of the Extremely Halophilic Archaeon Haloquadratum walsbyi

    Get PDF
    Ultrathin square cell Haloquadratum walsbyi from the Archaea domain are the most abundant microorganisms in the hypersaline water of coastal salterns and continental salt lakes. In this work, we explore the cell surface of these microorganisms using amplitude-modulation atomic-force microscopy in nearly physiological conditions. We demonstrate the presence of a regular corrugation with a periodicity of 16–20 nm attributed to the surface layer (S-layer) protein lattice, striped domains asymmetrically distributed on the cell faces and peculiar bulges correlated with the presence of intracellular granules. Besides, subsequent images of cell evolution during the drying process indicate the presence of an external capsule that might correspond to the giant protein halomucin, predicted by the genome but never before observed by other microscopy studies

    Control of primary productivity and the significance of photosynthetic bacteria in a meromictic kettle lake.

    Get PDF
    During 1986 planktonic primary production and controlling factors were investigated in a small (A0 = 11.8 · 103 m2, Zmax = 11.5 m) meromictic kettle lake (Mittlerer Buchensee). Annual phytoplankton productivity was estimated to ca 120 gC · m–2 · a–1 (1,42 tC · lake–1 · a–1). The marked thermal stratification of the lake led to irregular vertical distributions of chlorophylla concentrations (Chla) and, to a minor extent, of photosynthesis (Az). Between the depths of 0 to 6 m low Chla concentrations (< 7 mg · m–3) and comparatively high background light attenuation (kw = 0,525 m–1, 77% of total attenuation due to gelbstoff and abioseston) was found. As a consequence, light absorption by algae was low (mean value 17,4%) and self-shading was absent. Because of the small seasonal variation of Chla concentrations, no significant correlation between Chla and areal photosynthesis (A) was observed. Only in early summer (June–July) biomass appears to influence the vertical distribution of photosynthesis on a bigger scale. Around 8 m depth, low-light adapted algae and phototrophic bacteria formed dense layers. Due to low ambient irradiances, the contribution of these organisms to total primary productivity was small. Primary production and incident irradiance were significantly correlated with each other (r2 = 0.68). Although the maximum assimilation number (Popt) showed a clear dependence upon water temperature (Q10 = 2.31), the latter was of minor importance to areal photosynthesis

    Repurposing rapid diagnostic tests to detect falsified vaccines in supply chains

    Get PDF
    Substandard (including degraded) and falsified (SF) vaccines are a relatively neglected issue with serious global implications for public health. This has been highlighted during the rapid and widespread rollout of COVID-19 vaccines. There has been increasing interest in devices to screen for SF non-vaccine medicines including tablets and capsules to empower inspectors and standardise surveillance. However, there has been very limited published research focussed on repurposing or developing new devices for screening for SF vaccines. To our knowledge, rapid diagnostic tests (RDTs) have not been used for this purpose but have important potential for detecting falsified vaccines. We performed a proof-in-principle study to investigate their diagnostic accuracy using a diverse range of RDT-vaccine/falsified vaccine surrogate pairs. In an initial assessment, we demonstrated the utility of four RDTs in detecting seven vaccines. Subsequently, the four RDTs were evaluated by three blinded assessors with seven vaccines and four falsified vaccines surrogates. The results provide preliminary data that RDTs could be used by multiple international organisations, national medicines regulators and vaccine manufacturers/distributors to screen for falsified vaccines in supply chains, aligned with the WHO global ‘Prevent, Detect and Respond’ strategy

    Repurposing rapid diagnostic tests to detect falsified vaccines in supply chains

    Get PDF
    Substandard (including degraded) and falsified (SF) vaccines are a relatively neglected issue with serious global implications for public health. This has been highlighted during the rapid and widespread rollout of COVID-19 vaccines. There has been increasing interest in devices to screen for SF non-vaccine medicines including tablets and capsules to empower inspectors and standardise surveillance. However, there has been very limited published research focussed on repurposing or developing new devices for screening for SF vaccines. To our knowledge, rapid diagnostic tests (RDTs) have not been used for this purpose and have important potential for detecting falsified vaccines. We performed a proof-in-principle study to investigate their diagnostic accuracy using a diverse range of RDT-vaccine/falsified vaccine surrogate pairs. In an initial assessment, we demonstrated the utility of four RDTs in detecting seven vaccines. Subsequently, the four RDTs were evaluated by three blinded assessors with seven vaccines and four falsified vaccines surrogates. The results provide preliminary data that RDTs could be used by multiple international organisations, national medicines regulators and vaccine manufacturers/distributors to screen for falsified vaccines in supply chains, aligned with the WHO global ‘Prevent, Detect and Respond’ strategy

    Diversity of Haloquadratum and other haloarchaea in three, geographically distant, Australian saltern crystallizer ponds

    Get PDF
    Haloquadratum walsbyi is frequently a dominant member of the microbial communities in hypersaline waters. 16S rRNA gene sequences indicate that divergence within this species is very low but relatively few sites have been examined, particularly in the southern hemisphere. The diversity of Haloquadratum was examined in three coastal, but geographically distant saltern crystallizer ponds in Australia, using both culture-independent and culture-dependent methods. Two 97%-OTU, comprising Haloquadratum- and Halorubrum-related sequences, were shared by all three sites, with the former OTU representing about 40% of the sequences recovered at each site. Sequences 99.5% identical to that of Hqr. walsbyi C23T were present at all three sites and, overall, 98% of the Haloquadratum-related sequences displayed ≤2% divergence from that of the type strain. While haloarchaeal diversity at each site was relatively low (9–16 OTUs), seven phylogroups (clones and/or isolates) and 4 different clones showed ≤90% sequence identity to classified taxa, and appear to represent novel genera. Six of these branched together in phylogenetic tree reconstructions, forming a clade (MSP8-clade) whose members were only distantly related to classified taxa. Such sequences have only rarely been previously detected but were found at all three Australian crystallizers

    Biogenic gas nanostructures as ultrasonic molecular reporters

    Get PDF
    Ultrasound is among the most widely used non-invasive imaging modalities in biomedicine, but plays a surprisingly small role in molecular imaging due to a lack of suitable molecular reporters on the nanoscale. Here, we introduce a new class of reporters for ultrasound based on genetically encoded gas nanostructures from microorganisms, including bacteria and archaea. Gas vesicles are gas-filled protein-shelled compartments with typical widths of 45–250 nm and lengths of 100–600 nm that exclude water and are permeable to gas. We show that gas vesicles produce stable ultrasound contrast that is readily detected in vitro and in vivo, that their genetically encoded physical properties enable multiple modes of imaging, and that contrast enhancement through aggregation permits their use as molecular biosensors

    An approach for particle sinking velocity measurements in the 3–400 μm size range and considerations on the effect of temperature on sinking rates

    Get PDF
    The flux of organic particles below the mixed layer is one major pathway of carbon from the surface into the deep ocean. The magnitude of this export flux depends on two major processes—remineralization rates and sinking velocities. Here, we present an efficient method to measure sinking velocities of particles in the size range from approximately 3–400 μm by means of video microscopy (FlowCAM®). The method allows rapid measurement and automated analysis of mixed samples and was tested with polystyrene beads, different phytoplankton species, and sediment trap material. Sinking velocities of polystyrene beads were close to theoretical values calculated from Stokes’ Law. Sinking velocities of the investigated phytoplankton species were in reasonable agreement with published literature values and sinking velocities of material collected in sediment trap increased with particle size. Temperature had a strong effect on sinking velocities due to its influence on seawater viscosity and density. An increase in 9 °C led to a measured increase in sinking velocities of ~40 %. According to this temperature effect, an average temperature increase in 2 °C as projected for the sea surface by the end of this century could increase sinking velocities by about 6 % which might have feedbacks on carbon export into the deep ocean

    Variants in ALDH1A2 reveal an anti-inflammatory role for retinoic acid and a new class of disease-modifying drugs in osteoarthritis

    Get PDF
    More than 40% of individuals will develop osteoarthritis (OA) during their lifetime, yet there are currently no licensed disease-modifying treatments for this disabling condition. Common polymorphic variants in ALDH1A2, which encodes the key enzyme for synthesis of all-trans retinoic acid (atRA), are associated with severe hand OA. Here, we sought to elucidate the biological significance of this association. We first confirmed that ALDH1A2 risk variants were associated with hand OA in the U.K. Biobank. Articular cartilage was acquired from 33 individuals with hand OA at the time of routine hand OA surgery. After stratification by genotype, RNA sequencing was performed. A reciprocal relationship between ALDH1A2 mRNA and inflammatory genes was observed. Articular cartilage injury up-regulated similar inflammatory genes by a process that we have previously termed mechanoflammation, which we believe is a primary driver of OA. Cartilage injury was also associated with a concomitant drop in atRA-inducible genes, which were used as a surrogate measure of cellular atRA concentration. Both responses to injury were reversed using talarozole, a retinoic acid metabolism blocking agent (RAMBA). Suppression of mechanoflammation by talarozole was mediated by a peroxisome proliferator–activated receptor gamma (PPARγ)–dependent mechanism. Talarozole was able to suppress mechano-inflammatory genes in articular cartilage in vivo 6 hours after mouse knee joint destabilization and reduced cartilage degradation and osteophyte formation after 26 days. These data show that boosting atRA suppresses mechanoflammation in the articular cartilage in vitro and in vivo and identifies RAMBAs as potential disease-modifying drugs for OA

    The In Vivo Role of the RP-Mdm2-p53 Pathway in Signaling Oncogenic Stress Induced by pRb Inactivation and Ras Overexpression

    Get PDF
    The Mdm2-p53 tumor suppression pathway plays a vital role in regulating cellular homeostasis by integrating a variety of stressors and eliciting effects on cell growth and proliferation. Recent studies have demonstrated an in vivo signaling pathway mediated by ribosomal protein (RP)-Mdm2 interaction that responds to ribosome biogenesis stress and evokes a protective p53 reaction. It has been shown that mice harboring a Cys-to-Phe mutation in the zinc finger of Mdm2 that specifically disrupts RP L11-Mdm2 binding are prone to accelerated lymphomagenesis in an oncogenic c-Myc driven mouse model of Burkitt's lymphoma. Because most oncogenes when upregulated simultaneously promote both cellular growth and proliferation, it therefore stands to reason that the RP-Mdm2-p53 pathway might also be essential in response to oncogenes other than c-Myc. Using genetically engineered mice, we now show that disruption of the RP-Mdm2-p53 pathway by an Mdm2C305F mutation does not accelerate prostatic tumorigenesis induced by inactivation of the pRb family proteins (pRb/p107/p130). In contrast, loss of p19Arf greatly accelerates the progression of prostate cancer induced by inhibition of pRb family proteins. Moreover, using ectopically expressed oncogenic H-Ras we demonstrate that p53 response remains intact in the Mdm2C305F mutant MEF cells. Thus, unlike the p19Arf-Mdm2-p53 pathway, which is considered a general oncogenic response pathway, the RP-Mdm2-p53 pathway appears to specifically suppress tumorigenesis induced by oncogenic c-Myc
    corecore