17 research outputs found

    Results of special mechanical analyses of Luna 16 material

    Get PDF
    The studies carried out on the Luna 16 regolith have confirmed the data that were already published internationally. By means of activation analysis under irradiation in the reactor, activation analysis with a 14 MeV U-generator, and mass spectroscopy on samples of 10 or 20 mg, six main and 63 trace elements were quantitatively determined and compared with known data

    A tectonically driven Ediacaran oxygenation event.

    Get PDF
    The diversification of complex animal life during the Cambrian Period (541-485.4 Ma) is thought to have been contingent on an oxygenation event sometime during ~850 to 541 Ma in the Neoproterozoic Era. Whilst abundant geochemical evidence indicates repeated intervals of ocean oxygenation during this time, the timing and magnitude of any changes in atmospheric pO₂ remain uncertain. Recent work indicates a large increase in the tectonic CO₂ degassing rate between the Neoproterozoic and Paleozoic Eras. We use a biogeochemical model to show that this increase in the total carbon and sulphur throughput of the Earth system increased the rate of organic carbon and pyrite sulphur burial and hence atmospheric pO₂. Modelled atmospheric pO₂ increases by ~50% during the Ediacaran Period (635-541 Ma), reaching ~0.25 of the present atmospheric level (PAL), broadly consistent with the estimated pO₂ > 0.1-0.25 PAL requirement of large, mobile and predatory animals during the Cambrian explosion

    HPHT treatment of CO2 containing and CO2-related brown diamonds

    No full text
    International audienc

    Survival of presolar p-nuclide carriers in the nebula revealed by stepwise leaching of Allende refractory inclusions

    No full text
    The 87Rb-87Sr radiochronometer provides key insights into the timing of volatile element depletion in planetary bodies, yet the unknown nucleosynthetic origin of Sr anomalies in Ca-Al-rich inclusions (CAIs, the oldest dated solar system solids) challenges the reliability of resulting chronological interpretations. To identify the nature of these Sr anomalies, we performed step-leaching experiments on nine unmelted CAIs from Allende. In six CAIs, the chemically resistant residues (0.06 to 9.7% total CAI Sr) show extreme positive μ 84Sr (up to +80,655) and 87Sr variations that cannot be explained by decay of 87Rb. The extreme 84Sr but more subdued 87Sr anomalies are best explained by the presence of a presolar carrier enriched in the p-nuclide 84Sr. We argue that this unidentified carrier controls the isotopic anomalies in bulk CAIs and outer solar system materials, which reinstates the chronological significance of differences in initial 87Sr/86Sr between CAIs and volatile-depleted inner solar system materials

    Stable Sr-isotope, Sr/Ca, Mg/Ca, Li/Ca and Mg/Li ratios in the scleractinian cold-water coral <i>Lophelia pertusa</i>

    No full text
    The aragonitic skeletons of scleractinian cold-water corals can serve as valuable archives in paleoceanographic studies. The potential of d88/86Sr, Sr/Ca, Mg/Ca, Li/Ca and Mg/Li ratios of the cold-water coral Lophelia pertusa to record intermediate water mass properties has been investigated. Here we used samples from several locations along the European continental margin spanning a large temperature range from 6 to 14 °C. Stable strontium isotope measurements were carried out with the recently developed double spike TIMS technique and our results differ from those obtained with less precise methods. In contrast to the strong positive relationship with temperature of previous studies, our results suggest that d88/86Sr measured in scleractinian cold-water corals is not controlled by seawater temperature, but reflects the Sr isotopic composition of seawater with an offset of ?88/86Sr = - 0.196‰. As found in previous studies, the elemental ratios Sr/Ca, Li/Ca and Mg/Li measured in corals are significantly related to water temperature and do not correlate with salinity. Moreover, Sr/Ca ratios in L. pertusa display the expected inverse correlation with temperature. However, the variance in the Sr/Ca data severely limits the accuracy of paleotemperature estimates. The Li/Ca and Mg/Ca ratios reveal other influences besides temperature such as pH and/or growth or calcification rate. However, corresponding Mg/Li ratios in L. pertusa are more tightly related to temperature as they remove these secondary effects. In particular, the Mg/Li ratio in L. pertusa may serve as a new promising paleotemperature proxy for intermediate water masses. Our dataset represents the most extensive geochemical examination of L. pertusa to date, revealing a temperature sensitivity of 0.015 mol/mmol/°C for Mg/Li. However, using this temperature dependence and the precision of 5.3% (2SD) only temperature variations larger than ~ 1.5 °C can be resolved with 95% confidence
    corecore