2,040 research outputs found

    The determination of the mass of a Magellanic Cloud planetary nebula by speckle interferometry

    Get PDF
    We have resolved a Magellanic Cloud planetary nebula by speckle interferometry for the first time. Our observations of SMC N2 show it to have a double-ring structure, the rings having angular radii of 0.22 and 0.38 arcsec, corresponding to absolute radii of 0.06 and 0.10 pc. Our speckle observations of the galactic planetary nebula Vy 2–2 show a ring of angular diameter 0.4 arcsec, in agreement with previous VLA radio data. The radial hydrogen density profile for SMC N2 is determined and masses of 0.09M⊙ and 0.27M⊙ for the inner and outer shells respectively are derived, so that the total mass of this optically thin nebula is 0.36M⊙⁠. The nebular expansion velocity of SMC N2 has been derived from a high-resolution spectrum of the [O III] 5007 Å line and expansion ages of between 5000 and 12 000 yr have been derived for the shells. A reanalysis of the available nebular data leads us to derive a central star effective temperature of 110 000 K and a luminosity of 4340L⊙⁠, corresponding to a stellar mass of 0.59M⊙⁠, from a comparison with published evolutionary tracks. The stellar evolutionary age since leaving the AGB is about 8000 yr, consistent with the nebublar expansion age

    Champ or chump? Challenge and threat states during pressurized competition

    Get PDF
    Copyright © 2013 Human Kinetics, IncThe present research examined the immediate impact of challenge and threat states on golf performance in both real competition and a laboratory-based task. In Study 1, 199 experienced golfers reported their evaluations of competition demands and personal coping resources before a golf competition. Evaluating the competition as a challenge (i.e., sufficient resources to cope with demands) was associated with superior performance. In Study 2, 60 experienced golfers randomly received challenge or threat manipulation instructions and then performed a competitive golf-putting task. Challenge and threat states were successfully manipulated and the challenge group outperformed the threat group. Furthermore, the challenge group reported less anxiety, more facilitative interpretations of anxiety, less conscious processing, and displayed longer quiet eye durations. However, these variables failed to mediate the group-performance relationship. These studies demonstrate the importance of considering preperformance psychophysiological states when examining the influence of competitive pressure on motor performance

    Analysis of galactic tides and stars on CDM microhalos

    Get PDF
    A special purpose N-body simulation has been built to understand the tidal heating of the smallest dark matter substructures (10^{-6}\msun and 0.01pc) from the grainy potential of the Milky Way due to individual stars in the disk and the bulge. To test the method we first run simulations of single encounters of microhalos with an isolated star, and compare with analytical predictions of the dark particle bound fraction as a function of impact parameter. We then follow the orbits of a set of microhalos in a realistic flattened Milky Way potential. We concentrate on (detectable) microhalos passing near the Sun with a range of pericenter and apocenter. Stellar perturbers near the orbital path of a microhalo would exert stochachstic impulses, which we apply in a Monte Carlo fashion according to the Besancon model for the distribution of stars of different masses and ages in our Galaxy. Also incorporated are the usual pericenter tidal heating and disk-shocking heating. We give a detailed diagnosis of typical microhalos and find microhalos with internal tangential anisotropy are slightly more robust than the ones with radial anisotropy. In addition, the dark particles generally go through of a random walk in velocity space and diffuse out of the microhalos. We show that the typical destruction time scales are strongly correlated with the stellar density averaged along a microhalo's orbit over the age of the stellar disk. We also present the morphology of a microhalo at several epochs which may hold the key to dark matter detections.Comment: 15 pages, 12 figure

    Remote Sensing of Salinity and Overview of Results from Aquarius

    Get PDF
    Aquarius is a combined active/passive microwave (L-band) instrument designed to map the salinity of global oceans from space. The specific goal of Aquarius is to monitor the seasonal and interannual variation of the large scale features of the sea surface salinity (SSS) field of the open ocean (i.e. away from land). The instrumentation has been designed to provide monthly maps with a spatial resolution of 150 km and an accuracy of 0.2 ps

    Indium joints for cryogenic gravitational wave detectors

    Get PDF
    A viable technique for the preparation of highly thermal conductive joints between sapphire components in gravitational wave detectors is presented. The mechanical loss of such a joint was determined to be as low as 2 × 10−3 at 20 K and 2 × 10−2 at 300 K. The thermal noise performance of a typical joint is compared to the requirements of the Japanese gravitational wave detector, KAGRA. It is shown that using such an indium joint in the suspension system allows it to operate with low thermal noise. Additionally, results on the maximum amount of heat which can be extracted via indium joints are presented. It is found that sapphire parts, joined by means of indium, are able to remove the residual heat load in the mirrors of KAGRA

    High prevalence of bronchiectasis is linked to HTLV-1-associated inflammatory disease.

    Get PDF
    BACKGROUND: Human T-lymphotropic virus type 1 (HTLV-1), a retrovirus, is the causative agent of HTLV-1-associated myelopathy/tropical spastic paraparesis (HAM/TSP) and adult T-cell leukaemia/lymphoma (ATLL). The reported association with pulmonary disease such as bronchiectasis is less certain. METHODS: A retrospective case review of a HTLV-1 seropositive cohort attending a national referral centre. The cohort was categorised into HTLV-1 symptomatic patients (SPs) (ATLL, HAM/TSP, Strongyloidiasis and HTLV associated inflammatory disease (HAID)) and HTLV-1 asymptomatic carriers (ACs). The cohort was reviewed for diagnosis of bronchiectasis. RESULT: 34/246 ACs and 30/167 SPs had been investigated for respiratory symptoms by computer tomography (CT) with productive cough +/- recurrent chest infections the predominant indications. Bronchiectasis was diagnosed in one AC (1/246) and 13 SPs (2 HAID, 1 ATLL, 10 HAM/TSP) (13/167, RR 19.2 95 % CI 2.5-14.5, p = 0.004) with high resolution CT. In the multivariate analysis ethnicity (p = 0.02) and disease state (p < 0.001) were independent predictors for bronchiectasis. The relative risk of bronchiectasis in SPs was 19.2 (95 % CI 2.5-14.5, p = 0.004) and in HAM/TSP patients compared with all other categories 8.4 (95 % CI 2.7-26.1, p = 0.0002). Subjects not of African/Afro-Caribbean ethnicity had an increased prevalence of bronchiectasis (RR 3.45 95 % 1.2-9.7, p = 0.02). CONCLUSIONS: Bronchiectasis was common in the cohort (3.4 %). Risk factors were a prior diagnosis of HAM/TSP and ethnicity but not HTLV-1 viral load, age and gender. The spectrum of HTLV-associated disease should now include bronchiectasis and HTLV serology should be considered in patients with unexplained bronchiectasis

    Understanding consumer demand for new transport technologies and services, and implications for the future of mobility

    Full text link
    The transport sector is witnessing unprecedented levels of disruption. Privately owned cars that operate on internal combustion engines have been the dominant modes of passenger transport for much of the last century. However, recent advances in transport technologies and services, such as the development of autonomous vehicles, the emergence of shared mobility services, and the commercialization of alternative fuel vehicle technologies, promise to revolutionise how humans travel. The implications are profound: some have predicted the end of private car dependent Western societies, others have portended greater suburbanization than has ever been observed before. If transport systems are to fulfil current and future needs of different subpopulations, and satisfy short and long-term societal objectives, it is imperative that we comprehend the many factors that shape individual behaviour. This chapter introduces the technologies and services most likely to disrupt prevailing practices in the transport sector. We review past studies that have examined current and future demand for these new technologies and services, and their likely short and long-term impacts on extant mobility patterns. We conclude with a summary of what these new technologies and services might mean for the future of mobility.Comment: 15 pages, 0 figures, book chapte

    Soil Moisture ActivePassive (SMAP) L-Band Microwave Radiometer Post-Launch Calibration

    Get PDF
    The SMAP microwave radiometer is a fully-polarimetric L-band radiometer flown on the SMAP satellite in a 6 AM/ 6 PM sun-synchronous orbit at 685 km altitude. Since April, 2015, the radiometer is under calibration and validation to assess the quality of the radiometer L1B data product. Calibration methods including the SMAP L1B TA2TB (from Antenna Temperature (TA) to the Earths surface Brightness Temperature (TB)) algorithm and TA forward models are outlined, and validation approaches to calibration stability/quality are described in this paper including future work. Results show that the current radiometer L1B data satisfies its requirements
    corecore