155 research outputs found

    A stage-structured model to predict the effect of temperature and salinity on glass eel Anguilla anguilla pigmentation development

    Get PDF
    The pigmentation development process of glass eels Anguilla anguilla from stage V-B to VIA3 was modelled by gamma cumulative functions. These functions varied with respect to the factors temperature and salinity whose effects were adjusted by beta functions. Temperature was shown to accelerate pigmentation, while salinity acted as a secondary factor slowing down the pigmentation. The model fits the development of 15 samples kept at various temperatures and salinities in the Vilaine River, as well as samples monitored at other dates and places in Europe. It allows the prediction of the duration of estuarine residency for glass eels, in winter and spring, in the Atlantic estuaries

    Emission of volatile halogenated compounds, speciation and localization of bromine and iodine in the brown algal genome model Ectocarpus siliculosus

    Get PDF
    This study explores key features of bromine and iodine metabolism in the filamentous brown alga and genomics model Ectocarpus siliculosus. Both elements are accumulated in Ectocarpus, albeit at much lower concentration factors (2-3 orders of magnitude for iodine, and < 1 order of magnitude for bromine) than e.g. in the kelp Laminaria digitata. Iodide competitively reduces the accumulation of bromide. Both iodide and bromide are accumulated in the cell wall (apoplast) of Ectocarpus, with minor amounts of bromine also detectable in the cytosol. Ectocarpus emits a range of volatile halogenated compounds, the most prominent of which by far is methyl iodide. Interestingly, biosynthesis of this compound cannot be accounted for by vanadium haloperoxidase since the latter have not been found to catalyze direct halogenation of an unactivated methyl group or hydrocarbon so a methyl halide transferase-type production mechanism is proposed

    Understanding the potential in vitro modes of action of bis(β‐diketonato) oxovanadium(IV) complexes

    Get PDF
    To understand the potential in vitro modes of action of bis(β-diketonato) oxovanadium(IV) complexes, nine compounds of varying functionality have been screened using a range of biological techniques. The antiproliferative activity against a range of cancerous and normal cell lines has been determined, and show these complexes are particularly sensitive against the lung carcinoma cell line, A549. Annexin V (apoptosis) and Caspase-3/7 assays were studied to confirm these complexes induce programmed cell death. While gel electrophoresis was used to determine DNA cleavage activity and production of reactive oxygen species (ROS), the Comet assay was used to determine induced genomic DNA damage. Additionally, Förster resonance energy transfer (FRET)-based DNA melting and fluorescent intercalation displacement assays have been used to determine the interaction of the complexes with double strand (DS) DNA and to establish preferential DNA base-pair binding (AT versus GC)
    corecore