491 research outputs found

    Induced Crystallization of Polyelectrolyte-Surfactant Complexes at the Gas-Water Interface

    Full text link
    Synchrotron-X-ray and surface tension studies of a strong polyelectrolyte (PE) in the semi-dilute regime (~ 0.1M monomer-charges) with varying surfactant concentrations show that minute surfactant concentrations induce the formation of a PE-surfactant complex at the gas/solution interface. X-ray reflectivity and grazing angle X-ray diffraction (GIXD) provide detailed information of the top most layer, where it is found that the surfactant forms a two-dimensional liquid-like monolayer, with a noticeable disruption of the structure of water at the interface. With the addition of salt (NaCl) columnar-crystals with distorted-hexagonal symmetry are formed.Comment: 4 pages, 5 eps figure

    Phase transitions and iron-ordered moment form factor in LaFeAsO

    Get PDF
    Elastic neutron scattering studies of an optimized LaFeAsO single crystal reveal that upon cooling, an onset of the tetragonal (T)-to-orthorhombic (O) structural transition occurs at TS156T_\texttt{S} \approx 156 K, and it exhibits a sharp transition at TP148T_\texttt{P} \approx 148 K. We argue that in the temperature range TST_\texttt{S} to TPT_\texttt{P}, T and O structures may dynamically coexist possibly due to nematic spin correlations recently proposed for the iron pnictides, and we attribute TPT_\texttt{P} to the formation of long-range O domains from the finite local precursors. The antiferromagnetic structure emerges at TN140T_\texttt{N} \approx 140 K, with the iron moment direction along the O \emph{a} axis. We extract the iron magnetic form factor and use the tabulated j0\langle j_0\rangle of Fe, Fe2+^{2+} and Fe3+^{3+} to obtain a magnetic moment size of \sim0.8 μB\mu_\texttt{B} at 9.5 K.Comment: 7 pages, 6 figures, 3 table

    Magnetic excitations in underdoped Ba(Fe1-xCox)2As2 with x=0.047

    Get PDF
    The magnetic excitations in the paramagnetic-tetragonal phase of underdoped Ba(Fe0.953Co0.047)2As2, as measured by inelastic neutron scattering, can be well described by a phenomenological model with purely diffusive spin dynamics. At low energies, the spectrum around the magnetic ordering vector Q_AFM consists of a single peak with elliptical shape in momentum space. At high energies, this inelastic peak is split into two peaks across the direction perpendicular to Q_AFM. We use our fittings to argue that such a splitting is not due to incommensurability or propagating spin-wave excitations, but is rather a consequence of the anisotropies in the Landau damping and in the magnetic correlation length, both of which are allowed by the tetragonal symmetry of the system. We also measure the magnetic spectrum deep inside the magnetically-ordered phase, and find that it is remarkably similar to the spectrum of the paramagnetic phase, revealing the strongly overdamped character of the magnetic excitations.Comment: 12 pages, 7 figure

    Incommensurate Geometry of the Elastic Magnetic Peaks in Superconducting La1.88Sr0.12CuO4

    Get PDF
    We report magnetic neutron scattering measurements of incommensurate magnetic order in a superconducting single crystal of La1.88Sr0.12CuO4. We find that the incommensurate wavevectors which describe the static magnetism do not lie along high-symmetry directions of the underlying CuO2 lattice. The positions of the elastic magnetic peaks are consistent with those found in excess-oxygen doped La2CuO4+y. This behavior differs from the precise magnetic order found in the low temperature tetragonal La1.6-xNd0.4SrxCuO4 material for which stripes of spin and charge have been observed. These observations have clear implications for any stripe model proposed to describe the static magnetism in orthorhombic La2CuO4-based superconductors.Comment: 4 pages, 3 eps figure

    Disorder from order among anisotropic next-nearest-neighbor Ising spin chains in SrHo2_2O4_4

    Full text link
    We describe why Ising spin chains with competing interactions in SrHo2O4\rm SrHo_2O_4 segregate into ordered and disordered ensembles at low temperatures (TT). Using elastic neutron scattering, magnetization, and specific heat measurements, the two distinct spin chains are inferred to have N\'eel (\uparrow\downarrow\uparrow\downarrow) and double-N\'eel (\uparrow\uparrow\downarrow\downarrow) ground states respectively. Below TN=0.68(2)T_\mathrm{N}=0.68(2)~K, the N\'eel chains develop three dimensional (3D) long range order (LRO), which arrests further thermal equilibration of the double-N\'eel chains so they remain in a disordered incommensurate state for TT below TS=0.52(2)T_\mathrm{S}= 0.52(2)~K. SrHo2O4\rm SrHo_2O_4 distills an important feature of incommensurate low dimensional magnetism: kinetically trapped topological defects in a quasid-d-dimensional spin system can preclude order in d+1d+1 dimensions.Comment: 10 pages, 10 figure

    Commensurate-Incommensurate Magnetic Phase Transition in Magnetoelectric Single Crystal LiNiPO4_4

    Full text link
    Neutron scattering studies of single-crystal LiNiPO4_4 reveal a spontaneous first-order commensurate-incommensurate magnetic phase transition. Short- and long-range incommensurate phases are intermediate between the high temperature paramagnetic and the low temperature antiferromagnetic phases. The modulated structure has a predominant antiferromagnetic component, giving rise to satellite peaks in the vicinity of the fundamental antiferromagnetic Bragg reflection, and a ferromagnetic component giving rise to peaks at small momentum-transfers around the origin at (0,±Q,0)(0,\pm Q,0). The wavelength of the modulated magnetic structure varies continuously with temperature. It is argued that the incommensurate short- and long-range phases are due to spin-dimensionality crossover from a continuous to the discrete Ising state. These observations explain the anomalous first-order transition seen in the magnetoelectric effect of this system

    Observation of Magnetic Moments in the Superconducting State of YBa2_2Cu3_3O6.6_{6.6}

    Get PDF
    Neutron Scattering measurements for YBa2_2Cu3_3O6.6_{6.6} have identified small magnetic moments that increase in strength as the temperature is reduced below TT^\ast and further increase below TcT_c. An analysis of the data shows the moments are antiferromagnetic between the Cu-O planes with a correlation length of longer than 195 \AA in the aa-bb plane and about 35 \AA along the c-axis. The origin of the moments is unknown, and their properties are discusssed both in terms of Cu spin magnetism and orbital bond currents.Comment: 9 pages, and 4 figure

    Liquid-like thermal conduction in a crystalline solid

    Get PDF
    A solid conducts heat through both transverse and longitudinal acoustic phonons, but a liquid employs only longitudinal vibrations. Here, we report that the crystalline solid AgCrSe2 has liquid-like thermal conduction. In this compound, Ag atoms exhibit a dynamic duality that they are exclusively involved in intense low-lying transverse acoustic phonons while they also undergo local fluctuations inherent in an order-to-disorder transition occurring at 450 K. As a consequence of this extreme disorder-phonon coupling, transverse acoustic phonons become damped as approaching the transition temperature, above which they are not defined anymore because their lifetime is shorter than the relaxation time of local fluctuations. Nevertheless, the damped longitudinal acoustic phonon survives for thermal transport. This microscopic insight might reshape the fundamental idea on thermal transport properties of matter and facilitates the optimization of thermoelectrics.Comment: four figures, supplemental informatio

    Density Functional Application to Strongly Correlated Electron Systems

    Full text link
    The LSDA+U approach to density functional theory is carefully reanalyzed. Its possible link to single-particle Green's function theory is occasionally discussed. A simple and elegant derivation of the important sum rules for the on-site interaction matrix elements linking them to the values of U and J is presented. All necessary expressions for an implementation of LSDA+U into a non-orthogonal basis solver for the Kohn-Sham equations are given, and implementation into the FPLO solver is made. Results of application to several planar cuprate structures are reported in detail and conclusions on the interpretation of the physics of the electronic structure of the cuprates are drawn.Comment: invited paper in Journal of Solid State Chemistr
    corecore