165 research outputs found

    Assessment of Pathogens in Flood Waters in Coastal Rural Regions: Case study after Hurricane Michael and Florence

    Get PDF
    The severity of hurricanes, and thus the associated impacts, is changing over time. One of the understudied threats from damage caused by hurricanes is the potential for cross-contamination of water bodies with pathogens in coastal agricultural regions. Using microbiological data collected after hurricanes Florence and Michael, this study shows a dichotomy in the presence of pathogens in coastal North Carolina and Florida. Salmonella typhimurium was abundant in water samples collected in the regions dominated by swine farms. A drastic decrease in Enterococcus spp. in Carolinas is indicative of pathogen removal with flooding waters. Except for the abundance presence of Salmonella typhimurium, no significant changes in pathogens were observed after Hurricane Michael in the Florida panhandle. We argue that a comprehensive assessment of pathogens must be included in decision-making activities in the immediate aftermath of hurricanes to build resilience against risks of pathogenic exposure in rural agricultural and human populations in vulnerable locations

    The Effect of the 2015 Earthquake on the Bacterial Community Compositions in Water in Nepal

    Get PDF
    We conducted a study to examine the effect of seasonal variations and the disruptive effects of the 2015 Nepal earthquake on microbial communities associated with drinking water sources. We first characterized the microbial communities of water samples in two Nepali regions (Kathmandu and Jhapa) to understand the stability of microbial communities in water samples collected in 2014. We analyzed additional water samples from the same sources collected from May to August 2015, allowing the comparison of samples from dry-to-dry season and from dry-to-monsoon seasons. Emphasis was placed on microbes responsible for maintaining the geobiochemical characteristics of water (e.g., ammonia-oxidizing and nitrite-oxidizing bacteria and archaea and sulfate-reducing bacteria) and opportunistic pathogens often found in water (Acinetobacter). When examining samples from Jhapa, we identified that most geobiochemical microbe populations remained similar. When examining samples from Kathmandu, the abundance of microbial genera responsible for maintaining the geobiochemical characteristics of water increased immediately after the earthquake and decreased 8 months later (December 2015). In addition, microbial source tracking was used to monitor human fecal contamination and revealed deteriorated water quality in some specific sampling sites in Kathmandu post-earthquake. This study highlights a disruption of the environmental microbiome after an earthquake and the restoration of these microbial communities as a function of time and sanitation practices

    Geotechnical Effects of the 2015 Magnitude 7.8 Gorkha, Nepal, Earthquake and Aftershocks

    Get PDF
    This article summarizes the geotechnical effects of the 25 April 2015 M 7.8 Gorkha, Nepal, earthquake and aftershocks, as documented by a reconnaissance team that undertook a broad engineering and scientific assessment of the damage and collected perishable data for future analysis. Brief descriptions are provided of ground shaking, surface fault rupture, landsliding, soil failure, and infrastructure performance. The goal of this reconnaissance effort, led by Geotechnical Extreme Events Reconnaissance, is to learn from earthquakes and mitigate hazards in future earthquakes

    Indigenous use and bio-efficacy of medicinal plants in the Rasuwa District, Central Nepal

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>By revealing historical and present plant use, ethnobotany contributes to drug discovery and socioeconomic development. Nepal is a natural storehouse of medicinal plants. Although several ethnobotanical studies were conducted in the country, many areas remain unexplored. Furthermore, few studies have compared indigenous plant use with reported phytochemical and pharmacological properties.</p> <p>Methods</p> <p>Ethnopharmacological data was collected in the Rasuwa district of Central Nepal by conducting interviews and focus group discussions with local people. The informant consensus factor (F<sub>IC</sub>) was calculated in order to estimate use variability of medicinal plants. Bio-efficacy was assessed by comparing indigenous plant use with phytochemical and pharmacological properties determined from a review of the available literature. Criteria were used to identify high priority medicinal plant species.</p> <p>Results</p> <p>A total of 60 medicinal formulations from 56 plant species were documented. Medicinal plants were used to treat various diseases and disorders, with the highest number of species being used for gastro-intestinal problems, followed by fever and headache. Herbs were the primary source of medicinal plants (57% of the species), followed by trees (23%). The average F<sub>IC</sub> value for all ailment categories was 0.82, indicating a high level of informant agreement compared to similar studies conducted elsewhere. High F<sub>IC </sub>values were obtained for ophthalmological problems, tooth ache, kidney problems, and menstrual disorders, indicating that the species traditionally used to treat these ailments are worth searching for bioactive compounds: <it>Astilbe rivularis</it>, <it>Berberis asiatica</it>, <it>Hippophae salicifolia, Juniperus recurva</it>, and <it>Swertia multicaulis</it>. A 90% correspondence was found between local plant use and reported plant chemical composition and pharmacological properties for the 30 species for which information was available. Sixteen medicinal plants were ranked as priority species, 13 of which having also been prioritized in a country-wide governmental classification.</p> <p>Conclusions</p> <p>The <it>Tamang </it>people possess rich ethnopharmacological knowledge. This study allowed to identify many high value and high priority medicinal plant species, indicating high potential for economic development through sustainable collection and trade.</p

    Climatic risks and impacts in South Asia: extremes of water scarcity and excess

    Get PDF
    This paper reviews the current knowledge of climatic risks and impacts in South Asia associated with anthropogenic warming levels of 1.5°C to 4°C above pre-industrial values in the 21st century. It is based on the World Bank Report “Turn Down the Heat, Climate Extremes, Regional Impacts and the Case for Resilience” (2013). Many of the climate change impacts in the region, which appear quite severe even with relatively modest warming of 1.5–2°C, pose significant hazards to development. For example, increased monsoon variability and loss or glacial meltwater will likely confront populations with ongoing and multiple challenges. The result is a significant risk to stable and reliable water resources for the region, with increases in peak flows potentially causing floods and dry season flow reductions threatening agriculture. Irrespective of the anticipated economic development and growth, climate projections indicate that large parts of South Asia’s growing population and especially the poor are likely to remain highly vulnerable to climate change
    corecore