523 research outputs found

    Planetary observations at millimeter wavelengths

    Get PDF
    Observations of the Sun, Moon, Mercury, Venus, Mars, Jupiter, and Saturn were made at 3.1 mm and 8.6 mm wavelengths with a 16-foot radio telescope between March and August, 1971. Absolute brightness temperature data are given. All errors are one standard deviation and include uncertainties in antenna gain calibration. The solar and lunar temperatures are in excellent agreement with published observations. The planetary measurements at 3.1 mm are consistently higher than previous results. The implications of higher temperatures with respect to existing atmospheric and surface models are discussed

    Removing Green Scum from Tanks and Reservoirs with Bluestone.

    Get PDF
    3p

    The intratracheal administration of endotoxin: X. Dexamethasone downregulates neutrophil emigration and cytokine expression in vivo

    Full text link
    Intratracheal instillation of endotoxin (LPS) causes acute pulmonary inflammation characterized by the accumulation of plasma proteins and leukocytes within the pulmonary airways. The synthetic glucocorticoid dexamethasone 1) inhibits the LPS-initiated vascular leak of plasma proteins into the airspace, 2) inhibits the LPS-initiated emigration of neutrophils and lymphocytes into the airspace in a dose-dependent fashion, and 3) inhibits LPS-initiated mRNA and/or bronchoalveolar lavage protein expression of cytokines (TNF, IL-1 and IL-6) and chemokines (MIP-l α , MIP-2 and MCP-1). In conclusion, dexamethasone inhibits both the vascular and cellular aspects of acute inflammation by downregulation of a broad spectrum of inflammatory cytokines and chemokines.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/44515/1/10753_2005_Article_BF01487403.pd

    Semiannual and annual variations in the height of the ionospheric F2-peak

    Get PDF

    Rotational spectra of isotopic species of methyl cyanide, CH3_3CN, in their ground vibrational states up to terahertz frequencies

    Full text link
    Methyl cyanide is an important trace molecule in star-forming regions. It is one of the more common molecules used to derive kinetic temperatures in such sources. As preparatory work for Herschel, SOFIA, and in particular ALMA we want to improve the rest frequencies of the main as well as minor isotopologs of methyl cyanide. The laboratory rotational spectrum of methyl cyanide in natural isotopic composition has been recorded up to 1.63 THz. Transitions with good signal-to-noise ratio could be identified for CH3_3CN, 13^{13}CH3_3CN, CH313_3^{13}CN, CH3_3C15^{15}N, CH2_2DCN, and 13^{13}CH313_3^{13}CN in their ground vibrational states up to about 1.2 THz. The main isotopic species could be identified even in the highest frequency spectral recordings around 1.6 THz. The highest J′J' quantum numbers included in the fit are 64 for 13^{13}CH313_3^{13}CN and 89 for the main isotopic species. Greatly improved spectroscopic parameters have been obtained by fitting the present data together with previously reported transition frequencies. The present data will be helpful to identify isotopologs of methyl cyanide in the higher frequency bands of instruments such as the recently launched Herschel satellite, the upcoming airplane mission SOFIA or the radio telescope array ALMA.Comment: 13 pages, 2 figures, article appeared; CDMS links update

    On the Antenna Beam Shape Reconstruction Using Planet Transit

    Full text link
    The calibration of the in-flight antenna beam shape and possible beamdegradation is one of the most crucial tasks for the upcoming Planck mission. We examine several effects which could significantly influence the in-flight main beam calibration using planet transit: the problems of the variability of the Jupiter's flux, the antenna temperature and passing of the planets through the main beam. We estimate these effects on the antenna beam shape calibration and calculate the limits on the main beam and far sidelobe measurements, using observations of Jupiter and Saturn. We also discuss possible effects of degradation of the mirror surfaces and specify corresponding parameters which can help us to determine these effects.Comment: 10 pages, 8 figure

    An Absolute Flux Density Measurement of the Supernova Remnant Casseopia A at 32 GHz

    Get PDF
    We report 32 GHz absolute flux density measurements of the supernova remnant Cas A, with an accuracy of 2.5%. The measurements were made with the 1.5-meter telescope at the Owens Valley Radio Observatory. The antenna gain had been measured by NIST in May 1990 to be 0.505±0.007mKJy0.505 \pm 0.007 \frac{{\rm mK}}{{\rm Jy}}. Our observations of Cas A in May 1998 yield Scas,1998=194±5JyS_{cas,1998} = 194 \pm 5 {\rm Jy}. We also report absolute flux density measurements of 3C48, 3C147, 3C286, Jupiter, Saturn and Mars.Comment: 30 pages, 4 figures; accepted for publication by AJ. Revised systematic error budget, corrected typos, and added reference

    Broadband Meter-Wavelength Observations of Ionospheric Scintillation

    Full text link
    Intensity scintillations of cosmic radio sources are used to study astrophysical plasmas like the ionosphere, the solar wind, and the interstellar medium. Normally these observations are relatively narrow band. With Low Frequency Array (LOFAR) technology at the Kilpisj\"arvi Atmospheric Imaging Receiver Array (KAIRA) station in northern Finland we have observed scintillations over a 3 octave bandwidth. ``Parabolic arcs'', which were discovered in interstellar scintillations of pulsars, can provide precise estimates of the distance and velocity of the scattering plasma. Here we report the first observations of such arcs in the ionosphere and the first broad-band observations of arcs anywhere, raising hopes that study of the phenomenon may similarly improve the analysis of ionospheric scintillations. These observations were made of the strong natural radio source Cygnus-A and covered the entire 30-250\,MHz band of KAIRA. Well-defined parabolic arcs were seen early in the observations, before transit, and disappeared after transit although scintillations continued to be obvious during the entire observation. We show that this can be attributed to the structure of Cygnus-A. Initial results from modeling these scintillation arcs are consistent with simultaneous ionospheric soundings taken with other instruments, and indicate that scattering is most likely to be associated more with the topside ionosphere than the F-region peak altitude. Further modeling and possible extension to interferometric observations, using international LOFAR stations, are discussed.Comment: 11 pages, 17 figure
    • …
    corecore