20 research outputs found

    Heat exposure affects jejunal tight junction remodeling independently of adenosine monophosphate-activated protein kinase in 9-day-old broiler chicks

    No full text
    Dysfunction of the intestinal epithelial barrier under elevated temperatures is assumed to prompt pathological conditions and to eventually impede chickens' growth, resulting in massive economic losses in broiler industries. The aims of this research were to determine the impact of acute heat stress on the intestinal tight junction network of broiler chicks (Gallus domesticus L.) and to elucidate whether adenosine monophosphate-activated protein kinase (AMPK) was involved in the integrated response of the broiler's gastrointestinal tract to heat stress. A total of 80 9-day-old Arbor Acres chicks were subjected to temperature treatment (thermoneutral versus heat stress) and AMPK inhibition treatment (5 mg/kg body weight intraperitoneal injection of compound C vs. sham treatment) for 72 h. In addition to monitoring growth performance, the mRNA and protein levels of key tight junction proteins, target components of the AMPK pathway, and biomarkers of intestinal inflammation and oxidative stress were assessed in the jejunum under both stressors at 24 and 72 h. An increase of the major tight junction proteins, claudin-1 and zonula occludens-1, was implemented in response to an exacerbated expression of the AMP-activated protein kinase. Heat stress did not affect zootechnical performance but was confirmed by an increased gene expression of heat shock proteins 70 and 90 as well as heat shock factor-1. In addition, hyperthermia induced significant effects on tight junction proteins, although it was independent of AMPK.status: publishe

    Photochemical production of aerosols from real plant emissions

    Get PDF
    Emission of biogenic volatile organic compounds (VOC) which on oxidation form secondary organic aerosols (SOA) can couple the vegetation with the atmosphere and climate. Particle formation from tree emissions was investigated in a new setup: a plant chamber coupled to a reaction chamber for oxidizing the plant emissions and for forming SOA. Emissions from the boreal tree species birch, pine, and spruce were studied. In addition, alpha-pinene was used as reference compound. Under the employed experimental conditions, OH radicals were essential for inducing new particle formation, although O-3 (< 80 ppb) was always present and a fraction of the monoterpenes and the sesquiterpenes reacted with ozone before OH was generated. Formation rates of 3 nm particles were linearly related to the VOC carbon mixing ratios, as were the maximum observed volume and the condensational growth rates. For all trees, the threshold of new particle formation was lower than for alpha-pinene. It was lowest for birch which emitted the largest fraction of oxygenated VOC (OVOC), suggesting that OVOC may play a role in the nucleation process. Incremental mass yields were 5% for pine, spruce and alpha-pinene, and 10% for birch. alpha-Pinene was a good model compound to describe the yield and the growth of SOA particles from coniferous emissions. The mass fractional yields agreed well with observations for boreal forests. Despite the somewhat enhanced VOC and OH concentrations our results may be up-scaled to eco-system level. Using the mass fractional yields observed for the tree emissions and weighting them with the abundance of the respective trees in boreal forests SOA mass concentration calculations agree within 6% with field observations. For a future VOC increase of 50% we predict a particle mass increase due to SOA of 19% assuming today's mass contribution of pre-existing aerosol and oxidant levels

    RNAi-mediated suppression of isoprene biosynthesis in hybrid poplar impacts ozone tolerance

    No full text
    Isoprene is the most abundant volatile compound emitted by vegetation. It influences air chemistry and is thought to take part in plant defense reactions against abiotic stress such as high temperature or ozone. However, whether or not isoprene emission impacts ozone tolerance of plants is still in discussion. In this study, we exploited the transgenic non-isoprene emitting grey poplar (Populus x canescens (Aiton) Sm.) in a biochemical and physiological model study to investigate the effect of acute ozone stress on the elicitation of defense-related emissions of plant volatiles, on photosynthesis and on the antioxidative system. We recorded that non-isoprene emitting poplars were more resistant to ozone as indicated by less damaged leaf area and higher assimilation rates compared to ozone-exposed wild-type (WT) plants. The integral of green leaf volatile emissions was different between the two poplar phenotypes and was a reliable early marker for subsequent leaf damage. For other stress-induced volatiles, such as mono-, homo- and sesquiterpenes and methyl salicylate, similar time profiles, pattern and emission intensities were observed in both transgenic and WT plants. However, unstressed non-isoprene emitting poplars are characterized by elevated levels of ascorbate and alpha-tocopherol as well as by a more effective de-epoxidation ratio of xanthophylls than the WT. Since ozone quenching properties of ascorbate are much higher than those of isoprene and furthermore alpha-tocopherol is also an essential antioxidant, non-isoprene emitting poplars might benefit from changes within the antioxidative system by providing them with enhanced ozone tolerance
    corecore