2,408 research outputs found

    The Revision of the Colorado Trademark Registration Statute

    Get PDF

    Gain control with A-type potassium current: IA as a switch between divisive and subtractive inhibition

    Get PDF
    Neurons process information by transforming barrages of synaptic inputs into spiking activity. Synaptic inhibition suppresses the output firing activity of a neuron, and is commonly classified as having a subtractive or divisive effect on a neuron's output firing activity. Subtractive inhibition can narrow the range of inputs that evoke spiking activity by eliminating responses to non-preferred inputs. Divisive inhibition is a form of gain control: it modifies firing rates while preserving the range of inputs that evoke firing activity. Since these two "modes" of inhibition have distinct impacts on neural coding, it is important to understand the biophysical mechanisms that distinguish these response profiles. We use simulations and mathematical analysis of a neuron model to find the specific conditions for which inhibitory inputs have subtractive or divisive effects. We identify a novel role for the A-type Potassium current (IA). In our model, this fast-activating, slowly- inactivating outward current acts as a switch between subtractive and divisive inhibition. If IA is strong (large maximal conductance) and fast (activates on a time-scale similar to spike initiation), then inhibition has a subtractive effect on neural firing. In contrast, if IA is weak or insufficiently fast-activating, then inhibition has a divisive effect on neural firing. We explain these findings using dynamical systems methods to define how a spike threshold condition depends on synaptic inputs and IA. Our findings suggest that neurons can "self-regulate" the gain control effects of inhibition via combinations of synaptic plasticity and/or modulation of the conductance and kinetics of A-type Potassium channels. This novel role for IA would add flexibility to neurons and networks, and may relate to recent observations of divisive inhibitory effects on neurons in the nucleus of the solitary tract.Comment: 20 pages, 11 figure

    Gain Control With A-Type Potassium Current: IA As A Switch Between Divisive And Subtractive Inhibition

    Get PDF
    Neurons process and convey information by transforming barrages of synaptic inputs into spiking activity. Synaptic inhibition typically suppresses the output firing activity of a neuron, and is commonly classified as having a subtractive or divisive effect on a neuron’s output firing activity. Subtractive inhibition can narrow the range of inputs that evoke spiking activity by eliminating responses to non-preferred inputs. Divisive inhibition is a form of gain control: it modifies firing rates while preserving the range of inputs that evoke firing activity. Since these two “modes” of inhibition have distinct impacts on neural coding, it is important to understand the biophysical mechanisms that distinguish these response profiles. In this study, we use simulations and mathematical analysis of a neuron model to find the specific conditions (parameter sets) for which inhibitory inputs have subtractive or divisive effects. Significantly, we identify a novel role for the A-type Potassium current (IA). In our model, this fast-activating, slowly-inactivating outward current acts as a switch between subtractive and divisive inhibition. In particular, if IA is strong (large maximal conductance) and fast (activates on a time-scale similar to spike initiation), then inhibition has a subtractive effect on neural firing. In contrast, if IA is weak or insufficiently fast-activating, then inhibition has a divisive effect on neural firing. We explain these findings using dynamical systems methods (plane analysis and fast-slow dissection) to define how a spike threshold condition depends on synaptic inputs and IA. Our findings suggest that neurons can “self-regulate” the gain control effects of inhibition via combinations of synaptic plasticity and/or modulation of the conductance and kinetics of A-type Potassium channels. This novel role for IA would add flexibility to neurons and networks, and may relate to recent observations of divisive inhibitory effects on neurons in the nucleus of the solitary tract

    Interlocks in Corporate Management and the Antitrust Laws

    Get PDF

    Continuously wavelength-tunable high harmonic generation via soliton dynamics

    Full text link
    We report generation of high harmonics in a gas-jet pumped by pulses self-compressed in a He-filled hollow-core photonic crystal fiber through the soliton effect. The gas-jet is placed directly at the fiber output. As the energy increases the ionization-induced soliton blue-shift is transferred to the high harmonics, leading to a emission bands that are continuously tunable from 17 to 45 eV

    Foreword

    Get PDF

    Financial Institution Interlocks After the BankAmerica Case

    Get PDF

    The New Kansas Buyer Protection Act

    Get PDF

    Removal of the Corporate Director During His Term of Office

    Get PDF
    The traditional rules governing the removal of corporate directors have evolved so as to insulate the board of directors from the shareholders who elect them. Professor Travers in his article examines initially the interests being advanced by protecting the board members from removal by their electorate. He then critically analyzes the law as it relates to these interests in order to suggest a more rational approach
    corecore