316 research outputs found

    Konferensraad A. L. Drewsens Optegnelser om H. C. Andersen.

    Get PDF

    Dedikationseksemplarer i den Laage-Petersenske H.C. Andersen-Samling

    Get PDF

    Fire breve til arkitekt Hans Kristjan Tybjerg 1842-49

    Get PDF

    Den sidste rejse. Breve fra etatsraad Niels Tønder Lund til hans hustru.

    Get PDF

    H. C. Andersen og de danske i Paris 1833. En Vise og lidt Kommentar

    Get PDF

    Om Rejseunderstøttelse til H. C. Andersen i 1841. Nogle Breve og et Par Aktstykker

    Get PDF

    Phase transition in nanomagnetite

    Get PDF
    Recently, the application of nanosized magnetite particles became an area of growing interest for their potential practical applications. Nanosized magnetite samples of 36 and 9 nm sizes were synthesized. Special care was taken on the right stoichiometry of the magnetite particles. Mössbauer spectroscopy measurements were made in 4.2–300 K temperature range. The temperature dependence of the intensities of the spectral components indicated size dependent transition taking place in a broad temperature range. For nanosized samples, the hyperfine interaction values and their relative intensities changed above the Verwey transition temperature value of bulk megnetite. The continuous transition indicated the formation of dendritelike granular assemblies formed during the preparation of the samples

    In Situ Detection of Active Edge Sites in Single-Layer MoS2_2 Catalysts

    Full text link
    MoS2 nanoparticles are proven catalysts for processes such as hydrodesulphurization and hydrogen evolution, but unravelling their atomic-scale structure under catalytic working conditions has remained significantly challenging. Ambient pressure X-ray Photoelectron Spectroscopy (AP-XPS) allows us to follow in-situ the formation of the catalytically relevant MoS2 edge sites in their active state. The XPS fingerprint is described by independent contributions to the Mo3d core level spectrum whose relative intensity is sensitive to the thermodynamic conditions. Density Functional Theory (DFT) is used to model the triangular MoS2 particles on Au(111) and identify the particular sulphidation state of the edge sites. A consistent picture emerges in which the core level shifts for the edge Mo atoms evolve counter-intuitively towards higher binding energies when the active edges are reduced. The shift is explained by a surprising alteration in the metallic character of the edge sites, which is a distinct spectroscopic signature of the MoS2 edges under working conditions

    Density functional study of the adsorption and van der Waals binding of aromatic and conjugated compounds on the basal plane of MoS2

    Get PDF
    Accurate calculations of adsorption energies of cyclic molecules are of key importance in investigations of, e.g., hydrodesulfurization (HDS) catalysis. The present density functional theory (DFT) study of a set of important reactants, products, and inhibitors in HDS catalysis demonstrates that van der Waals interactions are essential for binding energies on MoS2 surfaces and that DFT with a recently developed exchange-correlation functional (vdW-DF) accurately calculates the van der Waals energy. Values are calculated for the adsorption energies of butadiene, thiophene, benzothiophene, pyridine, quinoline, benzene, and naphthalene on the basal plane of MoS2, showing good agreement with available experimental data, and the equilibrium geometry is found as flat at a separation of about 3.5 \uc5 for all studied molecules. This adsorption is found to be due to mainly van der Waals interactions. Furthermore, the manifold of adsorption-energy values allows trend analyses to be made, and they are found to have a linear correlation with the number of main atoms. \ua9 2009 American Institute of Physics
    • …
    corecore