547 research outputs found

    Землеройная машина для кабельных траншей

    Get PDF

    The rate of WD-WD head-on collisions in isolated triples is too low to explain standard type Ia supernovae

    Full text link
    Type Ia supernovae (Ia-SNe) are thought to arise from the thermonuclear explosions of white dwarfs (WDs). The progenitors of such explosions are still highly debated; in particular the conditions leading to detonations in WDs are not well understood in most of the suggested progenitor models. Nevertheless, direct head-on collisions of two WDs were shown to give rise to detonations and produce Ia-SNe - like explosions, and were suggested as possible progenitors. The rates of such collisions in dense globular clusters are far below the observed rates of type Ia SNe, but it was suggested that quasi-secular evolution of hierarchical triples could produce a high rate of such collisions. Here we used detailed triple stellar evolution populations synthesis models coupled with dynamical secular evolution to calculate the rates of WD-WD collisions in triples and their properties. We explored a range of models with different realistic initial conditions and derived the expected SNe total mass, mass-ratio and delay time distributions for each of the models. We find that the SNe rate from WD-WD collisions is of the order of 0.1% of the observed Ia-SNe rate across all our models, and the delay-time distribution is almost uniform in time, and is inconsistent with observations. We conclude that SNe from WD-WD collisions in isolated triples can at most provide for a small fraction of Ia-SNe, and can not serve as the main progenitors of such explosions.Comment: 13 pages, 4 figures, submitted to A&

    Gigahertz repetition rate thermionic electron gun concept

    Get PDF
    We present a novel concept for the generation of gigahertz repetition rate high brightness electron bunches. A custom design 100 kV thermionic gun provides a continuous electron beam, with the current determined by the filament size and temperature. A 1 GHz rectangular RF cavity deflects the beam across a knife-edge, creating a pulsed beam. Adding a higher harmonic mode to this cavity results in a flattened magnetic field profile which increases the duty cycle to 30%. Finally, a compression cavity induces a negative longitudinal velocity-time chirp in a bunch, initiating ballistic compression. Adding a higher harmonic mode to this cavity increases the linearity of this chirp and thus decreases the final bunch length. Charged particle simulations show that with a 0.15 mm radius LaB6 filament held at 1760 K, this method can create 279 fs, 3.0 pC electron bunches with a radial rms core emittance of 0.089 mm mrad at a repetition rate of 1 GHz.Comment: 12 pages, 12 figure

    Rare coral under the genomic microscope: timing and relationships among Hawaiian Montipora

    Get PDF
    Background Evolutionary patterns of scleractinian (stony) corals are difficult to infer given the existence of few diagnostic characters and pervasive phenotypic plasticity. A previous study of Hawaiian Montipora (Scleractinia: Acroporidae) based on five partial mitochondrial and two nuclear genes revealed the existence of a species complex, grouping one of the rarest known species (M. dilatata, which is listed as Endangered by the International Union for Conservation of Nature - IUCN) with widespread corals of very different colony growth forms (M. flabellata and M. cf. turgescens). These previous results could result from a lack of resolution due to a limited number of markers, compositional heterogeneity or reflect biological processes such as incomplete lineage sorting (ILS) or introgression. Results All 13 mitochondrial protein-coding genes from 55 scleractinians (14 lineages from this study) were used to evaluate if a recent origin of the M. dilatata species complex or rate heterogeneity could be compromising phylogenetic inference. Rate heterogeneity detected in the mitochondrial data set seems to have no significant impacts on the phylogenies but clearly affects age estimates. Dating analyses show different estimations for the speciation of M. dilatata species complex depending on whether taking compositional heterogeneity into account (0.8 [0.05–2.6] Myr) or assuming rate homogeneity (0.4 [0.14–0.75] Myr). Genomic data also provided evidence of introgression among all analysed samples of the complex. RADseq data indicated that M. capitata colour morphs may have a genetic basis. Conclusions Despite the volume of data (over 60,000 SNPs), phylogenetic relationships within the M. dilatata species complex remain unresolved most likely due to a recent origin and ongoing introgression. Species delimitation with genomic data is not concordant with the current taxonomy, which does not reflect the true diversity of this group. Nominal species within the complex are either undergoing a speciation process or represent ecomorphs exhibiting phenotypic polymorphisms.info:eu-repo/semantics/publishedVersio

    Whole tumor RNA-sequencing and deconvolution reveal a clinically-prognostic PTEN/PI3K-regulated glioma transcriptional signature

    Get PDF
    The concept that solid tumors are maintained by a productive interplay between neoplastic and non-neoplastic elements has gained traction with the demonstration that stromal fibroblasts and immune system cells dictate cancer development and progression. While less studied, brain tumor (glioma) biology is likewise influenced by non-neoplastic immune system cells (macrophages and microglia) which interact with neoplastic glioma cells to create a unique physiological state (glioma ecosystem) distinct from that found in the normal tissue. To explore this neoplastic ground state, we leveraged several preclinical mouse models of neurofibromatosis type 1 (NF1) optic glioma, a low-grade astrocytoma whose formation and maintenance requires productive interactions between non-neoplastic and neoplastic cells, and employed whole tumor RNA-sequencing and mathematical deconvolution strategies to characterize this low-grade glioma ecosystem as an aggregate of cellular and acellular elements. Using this approach, we demonstrate that optic gliomas generated by altering the germlin

    Этнокультурные процессы на белорусско-украинском пограничье

    Get PDF
    The article is based on materials of a scientific project, realized by Byelorussian and Ukrainian ethnologists. During the elaboration of this project the main attention was paid to revelation of basic tendencies and factors of the ethnocultural processes at the frontier of Byelorussia and Ukraine

    Использование метода анализа иерархий для оценки факторов эффективности маркетингового менеджмента туристско-оздоровительных комплексов

    Get PDF
    Обосновывается целесообразность использования метода анализа иерархий для оценки факторов, способствующих повышению эффективности маркетингового менеджмента туристических предприятий.Обґрунтовується доцільність використання методу аналізу ієрархії для оцінювання чинників, які сприяють підвищенню ефективності маркетингового менеджменту туристичних підприємств.The expediency of applying the method of analysis of hierarchies for the estimation of the factors which provide the effectiveness of marketing management of tourist enterprises is grounded

    The cell of origin dictates the temporal course of neurofibromatosis-1 (Nf1) low-grade glioma formation.

    Get PDF
    Low-grade gliomas are one of the most common brain tumors in children, where they frequently form within the optic pathway (optic pathway gliomas; OPGs). Since many OPGs occur in the context of the Neurofibromatosis Type 1 (NF1) cancer predisposition syndrome, we have previously employed Nf1 genetically-engineered mouse (GEM) strains to study the pathogenesis of these low-grade glial neoplasms. In the light of the finding that human and mouse low-grade gliomas are composed of Olig2+ cells and that Olig2+ oligodendrocyte precursor cells (OPCs) give rise to murine high-grade gliomas, we sought to determine whether Olig2+ OPCs could be tumor-initiating cells for Nf1 optic glioma. Similar to the GFAP-Cre transgenic strain previously employed to generate Nf1 optic gliomas, Olig2+ cells also give rise to astrocytes in the murine optic nerve in vivo. However, in contrast to the GFAP-Cre strain where somatic Nf1 inactivation in embryonic neural progenitor/stem cells (Nf1flox/mut; GFAP-Cre mice) results in optic gliomas by 3 months of age in vivo, mice with Nf1 gene inactivation in Olig2+ OPCs (Nf1flox/mut; Olig2-Cre mice) do not form optic gliomas until 6 months of age. These distinct patterns of glioma latency do not reflect differences in the timing or brain location of somatic Nf1 loss. Instead, they most likely reflect the cell of origin, as somatic Nf1 loss in CD133+ neural progenitor/stem cells during late embryogenesis results in optic gliomas at 3 months of age. Collectively, these data demonstrate that the cell of origin dictates the time to tumorigenesis in murine optic glioma

    The demographics of neutron star - white dwarf mergers: rates, delay-time distributions and progenitors

    Full text link
    The mergers of neutron stars (NSs) and white dwarfs (WDs) could give rise to explosive transients, potentially observable with current and future transient surveys. However, the expected properties and distribution of such events is not well understood. Here we characterize the rates of such events, their delay time distribution, their progenitors and the distribution of their properties. We use binary populations synthesis models and consider a wide range of initial conditions and physical processes. In particular we consider different common-envelope evolution models and different NS natal kick distributions. We provide detailed predictions arising from each of the models considered. We find that the majority of NS-WD mergers are born in systems in which mass-transfer played an important role, and the WD formed before the NS. For the majority of the mergers the WDs have a carbon-oxygen composition (60-80%) and most of the rest are with oxygen-neon WDs. The rates of NS-WD mergers are in the range of 3-15% of the type Ia supernovae (SNe) rate. Their delay time distribution is very similar to that of type Ia SNe, but slightly biased towards earlier times. They typically explode in young 0.1-1Gyr environments, but have a tail distribution extending to long, Gyrs-timescales. Models including significant kicks give rise to relatively wide offset distribution extending to hundreds of kpcs. The demographic and physical properties of NS-WD mergers suggest they are likely to be peculiar type Ic-like SNe, mostly exploding in late type galaxies. Their overall properties could be related to a class of rapidly evolving SNe recently observed, while they are less likely to be related to the class of Ca-rich SNe.Comment: updated version: accepted for publication in A&
    corecore