130 research outputs found

    A Possible Constraint on Regional Precipitation Intensity Changes under Global Warming

    Get PDF
    Changes in daily precipitation versus intensity under a global warming scenario in two regional climate simulations of the United States show a well-recognized feature of more intense precipitation. More important, by resolving the precipitation intensity spectrum, the changes show a relatively simple pattern for nearly all regions and seasons examined whereby nearly all high-intensity daily precipitation contributes a larger fraction of the total precipitation, and nearly all low-intensity precipitation contributes a reduced fraction. The percentile separating relative decrease from relative increase occurs around the 70th percentile of cumulative precipitation, irrespective of the governing precipitation processes or which model produced the simulation. Changes in normalized distributions display these features much more consistently than distribution changes without normalization. Further analysis suggests that this consistent response in precipitation intensity may be a consequence of the intensity spectrum’s adherence to a gamma distribution. Under the gamma distribution, when the total precipitation or number of precipitation days changes, there is a single transition between precipitation rates that contribute relatively more to the total and rates that contribute relatively less. The behavior is roughly the same as the results of the numerical models and is insensitive to characteristics of the baseline climate, such as average precipitation, frequency of rain days, and the shape parameter of the precipitation’s gamma distribution. Changes in the normalized precipitation distribution give a more consistent constraint on how precipitation intensity may change when climate changes than do changes in the nonnormalized distribution. The analysis does not apply to extreme precipitation for which the theory of statistical extremes more likely provides the appropriate description

    防护林带:湍流的数学模型与计算机模拟

    Get PDF
    虽然防护林用于减小风速、控制热量和水汽传递及污染物扩散、改善气候与环境、增加作物产量等已经有几百年了,但直到近几十年,人们才开始系统地研究防护林空气动力学的遮蔽机制.在本综述中,我们考察了绕防护林带的流动与湍流控制机制,最新的模型与数值模拟研究情况;通过数值模拟与实验数据的比较,来了解防护林带结构与防风效果之间的关系;讨论数值分析如何及为什么能够得到所需要的结果.本文将从多孔隙防护林带流动基本方程组的推导开始,讨论数值模型及模拟过程,对附体与分离流动进行预测;分析了遮蔽机制与动量交换;对风向、防护林密度、宽度和三维性对流动与湍流的影响作了系统的论述.还对热流和土壤水分蒸发的新模型及数值模拟作了简述.最后,我们对网络工作站、群和高性能分布式并行计算机及其对防护林带模型预报能力的提高作了讨论

    Evaluation of uncertainties in regional climate change simulations

    Get PDF
    We have run two regional climate models (RCMs) forced by three sets of initial and boundary conditions to form a 2×3 suite of 10-year climate simulations for the continental United States at approximately 50 km horizontal resolution. The three sets of driving boundary conditions are a reanalysis, an atmosphere-ocean coupled general circulation model (GCM) current climate, and a future scenario of transient climate change. Common precipitation climatology features simulated by both models included realistic orographic precipitation, east-west transcontinental gradients, and reasonable annual cycles over different geographic locations. However, both models missed heavy cool-season precipitation in the lower Mississippi River basin, a seemingly common model defect. Various simulation biases (differences) produced by the RCMs are evaluated based on the 2×3 experiment set in addition to comparisons with the GCM simulation. The RCM performance bias is smallest, whereas the GCM-RCM downscaling bias (difference between GCM and RCM) is largest. The boundary forcing bias (difference between GCM current climate driven run and reanalysis-driven run) and intermodel bias are both largest in summer, possibly due to different subgrid scale processes in individual models. The ratio of climate change to biases, which we use as one measure of confidence in projected climate changes, is substantially larger than 1 in several seasons and regions while the ratios are always less than 1 in summer. The largest ratios among all regions are in California. Spatial correlation coefficients of precipitation were computed between simulation pairs in the 2×3 set. The climate change correlation is highest and the RCM performance correlation is lowest while boundary forcing and intermodel correlations are intermediate. The high spatial correlation for climate change suggests that even though future precipitation is projected to increase, its overall continental-scale spatial pattern is expected to remain relatively constant. The low RCM performance correlation shows a modeling challenge to reproduce observed spatial precipitation patterns

    Transcriptome profiling of immune responses to cardiomyopathy syndrome (CMS) in Atlantic salmon

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Cardiomyopathy syndrome (CMS) is a disease associated with severe myocarditis primarily in adult farmed Atlantic salmon (<it>Salmo salar </it>L.), caused by a double-stranded RNA virus named piscine myocarditis virus (PMCV) with structural similarities to the <it>Totiviridae </it>family. Here we present the first characterisation of host immune responses to CMS assessed by microarray transcriptome profiling.</p> <p>Results</p> <p>Unvaccinated farmed Atlantic salmon post-smolts were infected by intraperitoneal injection of PMCV and developed cardiac pathology consistent with CMS. From analysis of heart samples at several time points and different tissues at early and clinical stages by oligonucleotide microarrays (SIQ2.0 chip), six gene sets representing a broad range of immune responses were identified, showing significant temporal and spatial regulation. Histopathological examination of cardiac tissue showed myocardial lesions from 6 weeks post infection (wpi) that peaked at 8-9 wpi and was followed by a recovery. Viral RNA was detected in all organs from 4 wpi suggesting a broad tissue tropism. High correlation between viral load and cardiac histopathology score suggested that cytopathic effect of infection was a major determinant of the myocardial changes. Strong and systemic induction of antiviral and IFN-dependent genes from 2 wpi that levelled off during infection, was followed by a biphasic activation of pathways for B cells and MHC antigen presentation, both peaking at clinical pathology. This was preceded by a distinct cardiac activation of complement at 6 wpi, suggesting a complement-dependent activation of humoral Ab-responses. Peak of cardiac pathology and viral load coincided with cardiac-specific upregulation of T cell response genes and splenic induction of complement genes. Preceding the reduction in viral load and pathology, these responses were probably important for viral clearance and recovery.</p> <p>Conclusions</p> <p>By comparative analysis of gene expression, histology and viral load, the temporal and spatial regulation of immune responses were characterised and novel immune genes identified, ultimately leading to a more complete understanding of host-virus responses and pathology and protection in Atlantic salmon during CMS.</p

    Windbreaks in North American Agricultural Systems

    Get PDF
    Windbreaks are a major component of successful agricultural systems throughout the world. The focus of this chapter is on temperate-zone, commercial, agricultural systems in North America, where windbreaks contribute to both producer profitability and environmental quality by increasing crop production while simultaneously reducing the level of off-farm inputs. They help control erosion and blowing snow, improve animal health and survival under winter conditions, reduce energy consumption of the farmstead unit, and enhance habitat diversity, providing refuges for predatory birds and insects. On a larger landscape scale windbreaks provide habitat for various types of wildlife and have the potential to contribute significant benefits to the carbon balance equation, easing the economic burdens associated with climate change. For a windbreak to function properly, it must be designed with the needs of the landowner in mind. The ability of a windbreak to meet a specific need is determined by its structure: both external structure, width, height, shape, and orientation as well as the internal structure; the amount and arrangement of the branches, leaves, and stems of the trees or shrubs in the windbreak. In response to windbreak structure, wind flow in the vicinity of a windbreak is altered and the microclimate in sheltered areas is changed; temperatures tend to be slightly higher and evaporation is reduced. These types of changes in microclimate can be utilized to enhance agricultural sustainability and profitability. While specific mechanisms of the shelter response remain unclear and are topics for further research, the two biggest challenges we face are: developing a better understanding of why producers are reluctant to adopt windbreak technology and defining the role of woody plants in the agricultural landscape
    corecore