118 research outputs found

    Short-Term Synaptic Plasticity in the Dentate Gyrus of Monkeys

    Get PDF
    The hippocampus plays an important role in learning and memory. Synaptic plasticity in the hippocampus, short-term and long-term, is postulated to be a neural substrate of memory trace. Paired-pulse stimulation is a standard technique for evaluating a form of short-term synaptic plasticity in rodents. However, evidence is lacking for paired-pulse responses in the primate hippocampus. In the present study, we recorded paired-pulse responses in the dentate gyrus of monkeys while stimulating to the medial part of the perforant path at several inter-pulse intervals (IPIs) using low and high stimulus intensities. When the stimulus intensity was low, the first pulse produced early strong depression (at IPIs of 10–30 ms) and late slight depression (at IPIs of 100–1000 ms) of field excitatory postsynaptic potentials (fEPSPs) generated by the second pulse, interposing no depression IPIs (50–70 ms). When the stimulus intensity was high, fEPSPs generated by the second pulse were depressed by the first pulse at all IPIs except for the longest one (2000 ms). Population spikes (PSs) generated by the second pulse were completely blocked or strongly depressed at shorter IPIs (10–100 or 200 ms, respectively), while no depression or slight facilitation occurred at longer IPIs (500–2000 ms). Administration of diazepam slightly increased fEPSPs, while it decreased PSs produced by the first pulse. It also enhanced the facilitation of PSs produced by the second stimulation at longer IPIs. The present results, in comparison with previous studies using rodents, indicate that paired-pulse responses of fEPSPs in the monkey are basically similar to those of rodents, although paired-pulse responses of PSs in the monkey are more delayed than those in rodents and have a different sensitivity to diazepam

    Increased Neural Activity of a Mushroom Body Neuron Subtype in the Brains of Forager Honeybees

    Get PDF
    Honeybees organize a sophisticated society, and the workers transmit information about the location of food sources using a symbolic dance, known as ‘dance communication’. Recent studies indicate that workers integrate sensory information during foraging flight for dance communication. The neural mechanisms that account for this remarkable ability are, however, unknown. In the present study, we established a novel method to visualize neural activity in the honeybee brain using a novel immediate early gene, kakusei, as a marker of neural activity. The kakusei transcript was localized in the nuclei of brain neurons and did not encode an open reading frame, suggesting that it functions as a non-coding nuclear RNA. Using this method, we show that neural activity of a mushroom body neuron subtype, the small-type Kenyon cells, is prominently increased in the brains of dancer and forager honeybees. In contrast, the neural activity of the two mushroom body neuron subtypes, the small-and large-type Kenyon cells, is increased in the brains of re-orienting workers, which memorize their hive location during re-orienting flights. These findings demonstrate that the small-type Kenyon cell-preferential activity is associated with foraging behavior, suggesting its involvement in information integration during foraging flight, which is an essential basis for dance communication

    Establishment of a new human osteosarcoma cell line, UTOS-1: cytogenetic characterization by array comparative genomic hybridization

    Get PDF
    The cytogenetic characteristics of osteosarcoma (OS) remain controversial. The establishment of a new human OS cell line may improve the characterization. We report the establishment of a new human osteosarcoma cell line, UTOS-1, from a typical osteoblastic OS of an 18-year-old man. Cultured UTOS-1 cells are spindle-shaped, and have been maintained in vitro for over 50 passages in more than 2 years. Xenografted UTOS-1 cells exhibit features typical of OS, such as production of osteoid or immature bone matrix, and proliferation potency in vivo. UTOS-1 also exhibit morphological and immunohistochemical characteristics typical of osteoblastic OS. Chromosomal analysis by G-band show 73~85 chromosomes with complicated translocations. Array CGH show frequent gains at locus DAB2 at chromosome 5q13, CCND2 at 12p13, MDM2 at 12q14.3-q15, FLI and TOP3A at 17p11.2-p12 and OCRL1 at Xq25, and show frequent losses at HTR1B at 6q13, D6S268 at 6q16.3-q21, SHGC17327 at 18ptel, and STK6 at 20q13.2-q13.3. The UTOS-1 cell line may prove useful for biologic and molecular pathogenetic investigations of human OS

    Detection of Neural Activity in the Brains of Japanese Honeybee Workers during the Formation of a “Hot Defensive Bee Ball”

    Get PDF
    Anti-predator behaviors are essential to survival for most animals. The neural bases of such behaviors, however, remain largely unknown. Although honeybees commonly use their stingers to counterattack predators, the Japanese honeybee (Apis cerana japonica) uses a different strategy to fight against the giant hornet (Vespa mandarinia japonica). Instead of stinging the hornet, Japanese honeybees form a “hot defensive bee ball” by surrounding the hornet en masse, killing it with heat. The European honeybee (A. mellifera ligustica), on the other hand, does not exhibit this behavior, and their colonies are often destroyed by a hornet attack. In the present study, we attempted to analyze the neural basis of this behavior by mapping the active brain regions of Japanese honeybee workers during the formation of a hot defensive bee ball. First, we identified an A. cerana homolog (Acks = Apis cerana kakusei) of kakusei, an immediate early gene that we previously identified from A. mellifera, and showed that Acks has characteristics similar to kakusei and can be used to visualize active brain regions in A. cerana. Using Acks as a neural activity marker, we demonstrated that neural activity in the mushroom bodies, especially in Class II Kenyon cells, one subtype of mushroom body intrinsic neurons, and a restricted area between the dorsal lobes and the optic lobes was increased in the brains of Japanese honeybee workers involved in the formation of a hot defensive bee ball. In addition, workers exposed to 46°C heat also exhibited Acks expression patterns similar to those observed in the brains of workers involved in the formation of a hot defensive bee ball, suggesting that the neural activity observed in the brains of workers involved in the hot defensive bee ball mainly reflects thermal stimuli processing

    Brain Cortical Mapping by Simultaneous Recording of Functional Near Infrared Spectroscopy and Electroencephalograms from the Whole Brain During Right Median Nerve Stimulation

    Get PDF
    To investigate relationships between hemodynamic responses and neural activities in the somatosensory cortices, hemodynamic responses by near infrared spectroscopy (NIRS) and electroencephalograms (EEGs) were recorded simultaneously while subjects received electrical stimulation in the right median nerve. The statistical significance of the hemodynamic responses was evaluated by a general linear model (GLM) with the boxcar design matrix convoluted with Gaussian function. The resulting NIRS and EEGs data were stereotaxically superimposed on the reconstructed brain of each subject. The NIRS data indicated that changes in oxy-hemoglobin concentration increased at the contralateral primary somatosensory (SI) area; responses then spread to the more posterior and ipsilateral somatosensory areas. The EEG data indicated that positive somatosensory evoked potentials peaking at 22 ms latency (P22) were recorded from the contralateral SI area. Comparison of these two sets of data indicated that the distance between the dipoles of P22 and NIRS channels with maximum hemodynamic responses was less than 10 mm, and that the two topographical maps of hemodynamic responses and current source density of P22 were significantly correlated. Furthermore, when onset of the boxcar function was delayed 5–15 s (onset delay), hemodynamic responses in the bilateral parietal association cortices posterior to the SI were more strongly correlated to electrical stimulation. This suggests that GLM analysis with onset delay could reveal the temporal ordering of neural activation in the hierarchical somatosensory pathway, consistent with the neurophysiological data. The present results suggest that simultaneous NIRS and EEG recording is useful for correlating hemodynamic responses to neural activity

    Cognitive and Socio-Emotional Deficits in Platelet-Derived Growth Factor Receptor-β Gene Knockout Mice

    Get PDF
    Platelet-derived growth factor (PDGF) is a potent mitogen. Extensive in vivo studies of PDGF and its receptor (PDGFR) genes have reported that PDGF plays an important role in embryogenesis and development of the central nervous system (CNS). Furthermore, PDGF and the β subunit of the PDGF receptor (PDGFR-β) have been reported to be associated with schizophrenia and autism. However, no study has reported on the effects of PDGF deletion on mice behavior. Here we generated novel mutant mice (PDGFR-β KO) in which PDGFR-β was conditionally deleted in CNS neurons using the Cre/loxP system. Mice without the Cre transgene but with floxed PDGFR-β were used as controls. Both groups of mice reached adulthood without any apparent anatomical defects. These mice were further examined by conducting several behavioral tests for spatial memory, social interaction, conditioning, prepulse inhibition, and forced swimming. The test results indicated that the PDGFR-β KO mice show deficits in all of these areas. Furthermore, an immunohistochemical study of the PDGFR-β KO mice brain indicated that the number of parvalbumin (calcium-binding protein)-positive (i.e., putatively γ-aminobutyric acid-ergic) neurons was low in the amygdala, hippocampus, and medial prefrontal cortex. Neurophysiological studies indicated that sensory-evoked gamma oscillation was low in the PDGFR-β KO mice, consistent with the observed reduction in the number of parvalbumin-positive neurons. These results suggest that PDGFR-β plays an important role in cognitive and socioemotional functions, and that deficits in this receptor may partly underlie the cognitive and socioemotional deficits observed in schizophrenic and autistic patients
    corecore