55,685 research outputs found
Evidence for the existence of nonradial solar oscillations: Solar rotation
The coherent properties of six oscillations over a two week period in which seven days of equatorial diameter measurements were analyzed, are confirmed by the addition of an extra day of data. The two large 1 (the principal order number in the spherical harmonic expansion of the eigenfunction) g-mode oscillations may be candidates for the slowly rotating mode locked structures. For the four low frequency p-modes, periodic nature is observed in the daily power levels, varying with periods of several days. This is attributed to beating between rotationally split m states for a given 1 value. Nonradial modes are a major contribution to the observed solar oscillations. The nonradial character of the observed modes allows the depth dependence of the internal solar rotation to be investigated
Recommended from our members
Clothing longevity perspectives: exploring consumer expectations, consumption and use
The production, distribution, use and end-of-life phases of the clothing lifecycle all have significant environmental impacts, but complete lifecycle assessment has identified that extending the active life of garments through design, use and re-use is the single most effective intervention in reducing the overall impact of the clothing industry (WRAP, 2011). In response, Government funded clothing longevity research seeks to develop and test industry-led design strategies to influence and enable consumers to keep garments in active use for longer (Cooper et al., 2014). While recent UK research has indicated significant potential to influence more sustainable consumer behaviour (Langley et al., 2013; YouGov, 2012), up-to-date qualitative research is required to discover how consumer attitudes, expectations and behaviours in relation to clothing lifetimes affects garment care and clothing use. This will help to inform industry-led strategies by understanding where effective changes can be made that will potentially have most impact. This paper presents preliminary findings from a Defra funded action based research project, ‘Strategies to improve design and testing for clothing longevity’. Qualitative research methods are used to explore consumer attitudes, expectations and behaviours at purchase, use and disposal stages of garment lifetimes, and gather data on practices of garment wash, wear, care and maintenance in everyday life. The research findings are discussed in relation to industry-led strategies aimed at extending the life of clothes
Two hard spheres in a pore: Exact Statistical Mechanics for different shaped cavities
The Partition function of two Hard Spheres in a Hard Wall Pore is studied
appealing to a graph representation. The exact evaluation of the canonical
partition function, and the one-body distribution function, in three different
shaped pores are achieved. The analyzed simple geometries are the cuboidal,
cylindrical and ellipsoidal cavities. Results have been compared with two
previously studied geometries, the spherical pore and the spherical pore with a
hard core. The search of common features in the analytic structure of the
partition functions in terms of their length parameters and their volumes,
surface area, edges length and curvatures is addressed too. A general framework
for the exact thermodynamic analysis of systems with few and many particles in
terms of a set of thermodynamic measures is discussed. We found that an exact
thermodynamic description is feasible based in the adoption of an adequate set
of measures and the search of the free energy dependence on the adopted measure
set. A relation similar to the Laplace equation for the fluid-vapor interface
is obtained which express the equilibrium between magnitudes that in extended
systems are intensive variables. This exact description is applied to study the
thermodynamic behavior of the two Hard Spheres in a Hard Wall Pore for the
analyzed different geometries. We obtain analytically the external work, the
pressure on the wall, the pressure in the homogeneous zone, the wall-fluid
surface tension, the line tension and other similar properties
Generalized Haldane Equation and Fluctuation Theorem in the Steady State Cycle Kinetics of Single Enzymes
Enyzme kinetics are cyclic. We study a Markov renewal process model of
single-enzyme turnover in nonequilibrium steady-state (NESS) with sustained
concentrations for substrates and products. We show that the forward and
backward cycle times have idential non-exponential distributions:
\QQ_+(t)=\QQ_-(t). This equation generalizes the Haldane relation in
reversible enzyme kinetics. In terms of the probabilities for the forward
() and backward () cycles, is shown to be the
chemical driving force of the NESS, . More interestingly, the moment
generating function of the stochastic number of substrate cycle ,
follows the fluctuation theorem in the form of
Kurchan-Lebowitz-Spohn-type symmetry. When $\lambda$ = $\Delta\mu/k_BT$, we
obtain the Jarzynski-Hatano-Sasa-type equality:
1 for all , where is the fluctuating chemical work
done for sustaining the NESS. This theory suggests possible methods to
experimentally determine the nonequilibrium driving force {\it in situ} from
turnover data via single-molecule enzymology.Comment: 4 pages, 3 figure
Sclera solar diameter observations
Focus is given to possible variations in solar luminosity and accurate methods of monitoring it. Aside from direct bolometry, one methodology for this type of research makes use of measurements of the solar diameter and limb darkening function as indirect indicators of the solar luminosity. This approach was reviewed
Chiral Hierarchies, Compositeness and the Renormalization Group
A wide class of models involve the fine--tuning of significant hierarchies
between a strong--coupling ``compositeness'' scale, and a low energy dynamical
symmetry breaking scale. We examine the issue of whether such hierarchies are
generally endangered by Coleman--Weinberg instabilities. A careful study using
perturbative two--loop renormalization group methods finds that consistent
large hierarchies are not generally disallowed.Comment: 22 pp + 5 figs (uuencoded and submitted separately),
SSCL-Preprint-490; FERMI-PUB-93/035-
Surface phase transitions in one-dimensional channels arranged in a triangular cross-sectional structure: Theory and Monte Carlo simulations
Monte Carlo simulations and finite-size scaling analysis have been carried
out to study the critical behavior in a submonolayer lattice-gas of interacting
monomers adsorbed on one-dimensional channels arranged in a triangular
cross-sectional structure. The model mimics a nanoporous environment, where
each nanotube or unit cell is represented by a one-dimensional array. Two kinds
of lateral interaction energies have been considered: , interaction
energy between nearest-neighbor particles adsorbed along a single channel and
, interaction energy between particles adsorbed across
nearest-neighbor channels. For and , successive planes are
uncorrelated, the system is equivalent to the triangular lattice and the
well-known
ordered phase is found at low temperatures and a coverage, , of 1/3
. In the more general case ( and ), a
competition between interactions along a single channel and a transverse
coupling between sites in neighboring channels allows to evolve to a
three-dimensional adsorbed layer. Consequently, the and structures "propagate" along the
channels and new ordered phases appear in the adlayer. The Monte Carlo
technique was combined with the recently reported Free Energy Minimization
Criterion Approach (FEMCA), to predict the critical temperatures of the
order-disorder transformation. The excellent qualitative agreement between
simulated data and FEMCA results allow us to interpret the physical meaning of
the mechanisms underlying the observed transitions.Comment: 24 pages, 6 figure
Kinetics of natural aging in Al-Mg-Si alloys studied by positron annihilation lifetime spectroscopy
The process of natural aging in pure ternary Al-Mg-Si alloys was studied by
positron annihilation lifetime spectroscopy in real time in order to clarify
the sequence and kinetics of clustering and precipitation. It was found that
natural aging takes place in at least five stages in these alloys, four of
which were directly observed. This is interpreted as the result of complex
interactions between vacancies and solute atoms or clusters. One of the early
stages of positron lifetime evolution coincides with a clustering process
observed by differential scanning calorimetry (DSC) and involves the formation
of a positron trap with \sim 0.200 ns lifetime. In later stages, a positron
trap with a higher lifetime develops in coincidence with the DSC signal of a
second clustering reaction. Mg governs both the kinetics and the lifetime
change in this stage. Within the first 10 min after quenching, a period of
nearly constant positron lifetime was found for those Mg-rich alloys that later
show an insufficient hardness response to artificial aging, the so-called
"negative effect." The various processes observed could be described by two
effective activation energies that were found by varying the aging temperature
from 10 to 37\degree C.Comment: arXiv admin note: same as v2, to correct mistaken v
- …