110 research outputs found

    Oxydation de S-triazines par les procédés d'oxydation radicalaire. Sous-produits de réaction et constantes cinétiques de réaction

    Get PDF
    L'étude bibliographique montre que l'oxydation de l'atrazine en milieu aqueux par 03, 03/H202, 03/UV, H202/UV et TiO2/UV ne permet qu'une dégradation limitée du pesticide (pas d'ouverture de l'hétérocycle azoté). Ces procédés d'oxydation conduisent aux mêmes sous-produits d'oxydation. Les composés N-déalkylés, les acétamido-s-triazines et l'hydroxyatrazine constituent les premiers sous-produits de dégradation de l'atrazine. Une oxydation plus poussée conduit par des réactions de N-déalkylation, d'hydroxylation et de déamination à la formation de produits finals relativement stables comme la déséthyldésisopropylatrazine, l'amméline, l'ammélide et l'acide cyanurique. La distribution des différents sous-produits en cours d'oxydation dépend du procédé d'oxydation utilisé, des conditions de mise en oeuvre du procédé (dose d'oxydants ou d'UV, longueur d'onde d'irradiation,...), des caractéristiques des eaux de dilution (pH, pièges à radicaux hydroxyles,...).Les études cinétiques indiquent que l'atrazine est relativement réfractaire à une oxydation par l'ozone moléculaire (constante cinétique de l'ordre de 6 l mol-¹ s-¹ à 20 °C) et est assez réactive vis-à-vis des radicaux hydroxyles (constante cinétique de l'ordre de 2,5 10·9 mol-¹ s-¹ à 20 °C). En ce qui concerne les constantes cinétiques de réaction des radicaux hydroxyles sur les autres s-triazines, les résultats montrent que les méthylthio s-triazines sont beaucoup plus réactives que les méthoxy s-triazines qui sont elles mêmes légèrement plus réactives que les chloro et hydroxy s-triazines. Parmi les sous-produits d'oxydation de l'atrazine, la déséthyldésisopropylatrazine et l'acide cyanurique sont très réfractaires à une oxydation par les radicaux hydroxyles et par l'ozone moléculaire.In this paper, oxidation studies of s-triazines in aqueous solution by advanced oxidation processes (O3, O3/H2O2, O3/UV, H2O2/UV, et TiO2/UV) have been reviewed.Oxidation by-products of atrazine:Several investigators have shown that N-dealkylated (deethylatrazine and deisopropylatrazine) and acetamido-s-triazines are the primary oxidation by-products of atrazine by O3 and by O3/H2O2 (table 1; fig. 1a). Under conditions which favored the production of hydroxyl radicals (03/H2O2), trace amounts of hydroxyatrazine may also be formed. These primary by-products are subsequently degraded to give complete N-dealkylated, deamined, dehalogenated and hydroxylated s-triazines (deethyldeisopropylatrazine, ammelide ammeline, cyanuric acid,...) (table 1). For example, oxidation of deethylatrazine by O3/H2O2 yields deethyldeisopropylatrazine as the major by-product (fig. 1b). Identical by-products are produced by photochemical oxidation (O3/UV, H2O2/UV and TiO2/UV) (table 2; fig. 4 and 5). UV photolysis of atrazine at 253.7 nm (monochromatic radiation) yields hydroxyatrazine as the major product (=0.95 -1.0 mole of hydroxyatrazine formed / mole of atrazine photolysed (fig. 4a) whereas N and N,N'-dealkylated, deaminated and hydroxyderivatives are produced by UV irradiation in the presence of ozone, hydrogen peroxide (fig. 4b) or photosensitisers.The s-triazine ring is found to be resistant to chemical and photochemical oxidation. Pathways for the degradation of atrazine by molecular ozone (fig. 2) and by hydroxyl radical (fg. 3) are proposed.Kinetic rate constants:The second-order kinetic rate constants for the reaction of molecular ozone and of hydroxyl radical with atrazine have been determined by several authors from competitive experiments or from kinetic models The rate constants for the reaction of ozone which have been measured (~ 61 mol-¹ s-¹ at ~ 20°C) indicate that molecular ozone is not very reactive towards atrazine. The rate constants which have been determined for the reaction of hydroxyl radical with atrazine by using different modes of generation of hydroxyl radicals (O3 + OH-; O3 + H2O2; PhotoFenton; H2O2 + UV) are in the order of 2 10[exp]9 - 2.5 10[exp]9 l mol-¹ s-¹ at ~ 20°C (table 3).Rate constants for the reaction of hydroxyl radical with other s-triazines have been determined from competitive kinetic experiments. The relative rate constants show that methylthio s-triazines are far more reactive than methoxy s-triazines, which in turn are more reactive than chloro and hydroxy s-triazines (table 4). The kinetic data also confirm that deethyldeisopropylatrazine and cyanuric acid are very refractory to the oxidation by hydroxyl radical

    Sous-produits de réaction formés lors de la filtration sur charbon actif de composés phénoliques en présence d'ions chlorite

    Get PDF
    L'étude des interactions entre les ions chlorite, un charbon actif en grains (CAG CECA 40) et des composés phénoliques (phénol et para-nitrophénol) a été réalisée à partir d'expériences de filtration sur mini-colonnes de CAG de solutions aqueuses de chlorite et du composé organique en mélange ([C102-] inf=50 mg.l-¹; [Composé Organique]jnf=200 µmol.l-¹ ; 3 g de CAG; Vitesse de filtration: 3,7 m.h-¹). Les résultats obtenus ont permis de montrer que la présence de chlorite conduit à une augmentation des capacités du CAG vis-à-vis de l'élimination du phénol et du para-nitrophénol. Cette augmentation résulte de réactions chimiques entre le composé organique et les sous-produits de décomposition des ions chlorite par le charbon actif. Les analyses par couplage CG/SM des extraits issus des charbons actifs à la fin des filtrations ont permis de mettre en évidence la présence de nombreux composés adsorbés sur le charbon actif. Les composés identifiés résultent de réactions d'oxydation, de deshydroxylation, de carboxylation, d'halogénation, d'hydroxylation et de dimérisation. L'action des ions chlorite sur le charbon actif peut conduire à la formation de radicaux à la surface du charbon actif ou en solution capables de réagir avec les composés organiques pour former les sous-produits observés.The use of chlorine dioxide for the chemical preoxidation of potable water with high oxidant demand requires that the major inorganic byproduct, chlorite, in the treatment system be removed, owing to the potential toxicity of this oxychlorine species. Granular Activated Carbon (GAC) filtration, in converting chlorite ions into chloride, appears to be an interesting approach, but very few data are available concerning possible interactions in the presence of organic matter. The present research was designed to examine the influence of phenolic compounds on the efficiency of activated carbon in removing chlorite and to study the reactions between chlorite, activated carbon and organic molecules. Laboratory experiments have been carried out with relatively high substrate concentrations in order to identify the resulting byproducts.Materials and Methods.Filtrations of solutions containing chlorite and a phenolic compound (phenol or para nitrophenol; [Organic Compound]inf=200 µmol.L-¹;[C102-] inf=50 mg L-¹; pH=7.2); were performed using 1- cm i.d. glass columns packed with 3.0 g of GAC CECA 40 (Flow rate: 3.7 m.h-¹). Inorganic species were analysed by HPLC, with an anion column and a conductimetric detector for chloride and chlorate, and with a C-18 column and a UV detector for chlorite. Phenol and para nitrophenol were also analysed by HPLC, in the reverse mode. At the conclusion of the filtrations, the Total Organic Halogen (TOX) adsorbed on the carbon was determined after combustion of the carbon and measurement of the liberated halides with a micro coulometer (Dohrmann DX20). In order to identify organic reaction byproducts, carbon samples were Soxhlet extracted with methylene chloride and half of the extracts were methylated with diazomethane. Identification of the organic products was then carried out by gas chromatography / mass spectrometry with a DB5 capillary column and a quadrupolar hyperbolic filter system CPV/MS.Results and Discussion.Effects of phenol and p nitrophenol on removal of chlorite by GAC. The effluent curves from columns that received solutions containing both chlorite and an organic solute (columns A and B; fig. 1) showed that the presence of phenol or p nitrophenol in the influent decreases the capacity of GAC to remove chlorite.Effect of chlorite on removal of phenol and p nitrophenol. An increase in the cumulative removal of the organic solute was observed for columns A and B compared with columns that received solutions of the phenolic compound only (fig. 2; table 11). p benzoquinone was found in the eff1uent of column A fed with a chlorite phenol solution (fig. 3).Formation of organic byproducts by reactions between chlorite and phenol or p nitrophenol in the presence of GAC. TOX analyses showed that interactions between chlorite, GAC, and phenol or p nitrophenol led to the production of organohalogenated compounds. These data clearly demonstrate that halogenation reactions take place in the GAC bed and that a fraction of the total amount of phenol or p nitrophenol removed can be due to chemical reactions. GC/MS analyses of GAC extracts of columns A and B (tables IV and V) indicated that the phenol chlorite GAC reactions yield a variety of organic byproducts that are produced by hydroxylation and carboxylation of the aromatic ring by oxidation to quinones, by chlorine substitution and by dehydroxylation and dimerization reactions. Fewer products could be identified in the reaction between p nitrophenol, chlorite, and GAC. Since chlorite is unreactive with phenol and p nitrophenol in neutral aqueous solution, the formation of these organic byproducts can be attributed to reactions between phenol or p nitrophenol present in the GAC pore solution or adsorbed on GAC and the chemical species (Cl· ClO·, ClO2, HOCl (ClO-), surface free radicals ...) generated from the reaction of chlorite and carbon. Thus, aromatic acids could come from radical processes between adsorbed molecules and carbon surface functional groups oxidized by chlorite. The formation of dimers can also be explained by a freeradical mechanism. The reactions between Cl·, ClO· radicals or radicals present on the GAC surface, with organic compounds produce organic radicals via H atom abstraction or one electron transfer. Organic radicals such as phenoxy radicals or other aromatic radicals can then undergo dimerization by carbon-oxygen or carbon-carbon coupling. The formation of organochlorinated compounds can be explained by the reaction of chlorine (HOCl, ClO-) and chlorine radicals with organic molecules present in the solution. However further investigation is needed in order to evaluate if such compounds can be formed on GAC filters and then desorbed in the effluent in thc case of drinking waters pretreated with chlorine dioxide

    Simple scoring system to predict in-hospital mortality after surgery for infective endocarditis

    Get PDF
    BACKGROUND: Aspecific scoring systems are used to predict the risk of death postsurgery in patients with infective endocarditis (IE). The purpose of the present study was both to analyze the risk factors for in-hospital death, which complicates surgery for IE, and to create a mortality risk score based on the results of this analysis. METHODS AND RESULTS: Outcomes of 361 consecutive patients (mean age, 59.1\ub115.4 years) who had undergone surgery for IE in 8 European centers of cardiac surgery were recorded prospectively, and a risk factor analysis (multivariable logistic regression) for in-hospital death was performed. The discriminatory power of a new predictive scoring system was assessed with the receiver operating characteristic curve analysis. Score validation procedures were carried out. Fifty-six (15.5%) patients died postsurgery. BMI >27 kg/m2 (odds ratio [OR], 1.79; P=0.049), estimated glomerular filtration rate 55 mm Hg (OR, 1.78; P=0.032), and critical state (OR, 2.37; P=0.017) were independent predictors of in-hospital death. A scoring system was devised to predict in-hospital death postsurgery for IE (area under the receiver operating characteristic curve, 0.780; 95% CI, 0.734-0.822). The score performed better than 5 of 6 scoring systems for in-hospital death after cardiac surgery that were considered. CONCLUSIONS: A simple scoring system based on risk factors for in-hospital death was specifically created to predict mortality risk postsurgery in patients with IE

    Enterococcal endocarditis in the beginning of the 21st century: analysis from the International Collaboration on Endocarditis-Prospective Cohort Study

    Get PDF
    Enterococci are reportedly the third most common group of endocarditis-causing pathogens but data on enterococcal infective endocarditis (IE) are limited. The aim of this study was to analyse the characteristics and prognostic factors of enterococcal IE within the International Collaboration on Endocarditis. In this multicentre, prospective observational cohort study of 4974 adults with definite IE recorded from June 2000 to September 2006, 500 patients had enterococcal IE. Their characteristics were described and compared with those of oral and group D streptococcal IE. Prognostic factors for enterococcal IE were analysed using multivariable Cox regression models. The patients' mean age was 65 years and 361/500 were male. Twenty-three per cent (117/500) of cases were healthcare related. Enterococcal IE were more frequent than oral and group D streptococcal IE in North America. The 1-year mortality rate was 28.9% (144/500). E. faecalis accounted for 90% (453/500) of enterococcal IE. Resistance to vancomycin was observed in 12 strains, eight of which were observed in North America, where they accounted for 10% (8/79) of enterococcal strains, and was more frequent in E. faecium than in E. faecalis (3/16 vs. 7/364 , p 0.01). Variables significantly associated with 1-year mortality were heart failure (HR 2.4, 95% CI 1.7--3.5, p <0.0001), stroke (HR 1.9, 95% CI 1.3--2.8, p 0.001) and age (HR 1.02 per 1-year increment, 95% CI 1.01--1.04, p 0.002). Surgery was not associated with better outcome. Enterococci are an important cause of IE, with a high mortality rate. Healthcare association and vancomycin resistance are common in particular in North America
    corecore