285 research outputs found

    Particle production and equilibrium properties within a new hadron transport approach for heavy-ion collisions

    Full text link
    The microscopic description of heavy-ion reactions at low beam energies is achieved within hadronic transport approaches. In this article a new approach SMASH (Simulating Many Accelerated Strongly-interacting Hadrons) is introduced and applied to study the production of non-strange particles in heavy-ion reactions at Ekin=0.4−2AE_{\rm kin}=0.4-2A GeV. First, the model is described including details about the collision criterion, the initial conditions and the resonance formation and decays. To validate the approach, equilibrium properties such as detailed balance are presented and the results are compared to experimental data for elementary cross sections. Finally results for pion and proton production in C+C and Au+Au collisions is confronted with HADES and FOPI data. Predictions for particle production in π+A\pi+A collisions are made.Comment: 30 pages, 30 figures, replaced with published version; only minor change

    Particle production and equilibrium properties within a new hadron transport approach for heavy-ion collisions

    Full text link
    The microscopic description of heavy-ion reactions at low beam energies is achieved within hadronic transport approaches. In this article a new approach called "Simulating Many Accelerated Strongly interacting Hadrons" (SMASH) is introduced and applied to study the production of nonstrange particles in heavy-ion reactions at Ekin=0.4A-2A GeV. First, the model is described including details about the collision criterion, the initial conditions and the resonance formation and decays. To validate the approach, equilibrium properties such as detailed balance are presented and the results are compared to experimental data for elementary cross sections. Finally results for pion and proton production in C+C and Au+Au collisions is confronted with data from the high-acceptance dielectron spectrometer (HADES) and FOPI. Predictions for particle production in π+A collisions are made

    Measurement of Inverse Pion Photoproduction at Energies Spanning the N(1440) Resonance

    Full text link
    Differential cross sections for the process pi^- p -> gamma n have been measured at Brookhaven National Laboratory's Alternating Gradient Synchrotron with the Crystal Ball multiphoton spectrometer. Measurements were made at 18 pion momenta from 238 to 748 MeV/c, corresponding to E_gamma for the inverse reaction from 285 to 769 MeV. The data have been used to evaluate the gamma n multipoles in the vicinity of the N(1440) resonance. We compare our data and multipoles to previous determinations. A new three-parameter SAID fit yields 36 +/- 7 (GeV)^-1/2 X 10^-3 for the A^n_1/2 amplitude of the P_11.Comment: 14 pages, 8 figures, submitted to PR

    Precision Pion-Proton Elastic Differential Cross Sections at Energies Spanning the Delta Resonance

    Full text link
    A precision measurement of absolute pi+p and pi-p elastic differential cross sections at incident pion laboratory kinetic energies from T_pi= 141.15 to 267.3 MeV is described. Data were obtained detecting the scattered pion and recoil proton in coincidence at 12 laboratory pion angles from 55 to 155 degrees for pi+p, and six angles from 60 to 155 degrees for pi-p. Single arm measurements were also obtained for pi+p energies up to 218.1 MeV, with the scattered pi+ detected at six angles from 20 to 70 degrees. A flat-walled, super-cooled liquid hydrogen target as well as solid CH2 targets were used. The data are characterized by small uncertainties, ~1-2% statistical and ~1-1.5% normalization. The reliability of the cross section results was ensured by carrying out the measurements under a variety of experimental conditions to identify and quantify the sources of instrumental uncertainty. Our lowest and highest energy data are consistent with overlapping results from TRIUMF and LAMPF. In general, the Virginia Polytechnic Institute SM95 partial wave analysis solution describes our data well, but the older Karlsruhe-Helsinki PWA solution KH80 does not.Comment: 39 pages, 22 figures (some with quality reduced to satisfy ArXiv requirements. Contact M.M. Pavan for originals). Submitted to Physical Review

    Systemic neurotransmitter responses to clinically approved and experimental neuropsychiatric drugs.

    Get PDF
    Neuropsychiatric disorders are the third leading cause of global disease burden. Current pharmacological treatment for these disorders is inadequate, with often insufficient efficacy and undesirable side effects. One reason for this is that the links between molecular drug action and neurobehavioral drug effects are elusive. We use a big data approach from the neurotransmitter response patterns of 258 different neuropsychiatric drugs in rats to address this question. Data from experiments comprising 110,674 rats are presented in the Syphad database [ www.syphad.org ]. Chemoinformatics analyses of the neurotransmitter responses suggest a mismatch between the current classification of neuropsychiatric drugs and spatiotemporal neurostransmitter response patterns at the systems level. In contrast, predicted drug-target interactions reflect more appropriately brain region related neurotransmitter response. In conclusion the neurobiological mechanism of neuropsychiatric drugs are not well reflected by their current classification or their chemical similarity, but can be better captured by molecular drug-target interactions

    Modeling of graphite oxide

    Full text link
    Based on density functional calculations, optimized structures of graphite oxide are found for various coverage by oxygen and hydroxyl groups, as well as their ratio corresponding to the minimum of total energy. The model proposed describes well known experimental results. In particular, it explains why it is so difficult to reduce the graphite oxide up to pure graphene. Evolution of the electronic structure of graphite oxide with the coverage change is investigated.Comment: 12 pages, 7 figures. Discussion about reduction to pure graphene and several references added. Methodological part expanded. Accepted to J. Am. Chem. So
    • …
    corecore