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Systemic neurotransmitter responses to clinically
approved and experimental neuropsychiatric drugs
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Neuropsychiatric disorders are the third leading cause of global disease burden. Current

pharmacological treatment for these disorders is inadequate, with often insufficient efficacy

and undesirable side effects. One reason for this is that the links between molecular drug

action and neurobehavioral drug effects are elusive. We use a big data approach from the

neurotransmitter response patterns of 258 different neuropsychiatric drugs in rats to address

this question. Data from experiments comprising 110,674 rats are presented in the Syphad

database [www.syphad.org]. Chemoinformatics analyses of the neurotransmitter responses

suggest a mismatch between the current classification of neuropsychiatric drugs and spa-

tiotemporal neurostransmitter response patterns at the systems level. In contrast, predicted

drug–target interactions reflect more appropriately brain region related neurotransmitter

response. In conclusion the neurobiological mechanism of neuropsychiatric drugs are not well

reflected by their current classification or their chemical similarity, but can be better captured

by molecular drug–target interactions.
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Mental disorders are common throughout the world, yet
treatment success is modest. In general, the difficulties
in developing optimal therapeutic agents for neu-

ropsychiatric disorders are due to limitations of understanding
the pathophysiology of these diseases and consequently lack of
appropriate biomarkers and molecular targets1. Modern psy-
chiatry therefore searches for new ways of classifying psycho-
pathology based on dimensions of observable behaviour and
neurobiological measures to improve diagnosis and treatment2.

Currently, the classification of neuropsychiatric drugs is pri-
marily based on their clinical and therapeutic effects. Since 1996,
the World Health Organization emphasizes the use of the ana-
tomical therapeutic chemical (ATC) classification system for
drugs as an international standard. In the ATC, medications for
psychiatric practice are classified under the central nervous sys-
tem (CNS) category and are grouped on the basis of their ther-
apeutic use such as antidepressants, mood stabilizers, anxiolytics,
sedatives or hypnotics, antipsychotics, psychostimulants, antic-
onvulsants and anti-dementia drugs. Further classification levels
relate to a combination of chemical structure, pharmacological
action and/or therapeutic use. One criticism of the ATC system is
that agents are not classified and grouped systematically. Hence
in many ATC main groups, pharmacological groups have been
assigned allowing drugs with several therapeutic uses to be
included without specifying the main indication. Furthermore, for
psychiatry the ATC system relies on largely subjective syndrome-
based disease classifications described in either the fifth edition of
Diagnostic and Statistical Manual of Mental Disorders (DSM-5)
or the 11th version of the International Statistical Classification of
Diseases (ICD-11). An intrinsic feature of psychiatric diagnoses is
the presence of overlapping criteria and comorbidities. A good
example is the diagnosis of anxiety and personality disorders. In
the majority of cases, patients with an anxiety (or a personality)
disorder fulfil criteria for at least one additional anxiety (or per-
sonality) disorder3. The ATC system inherits this feature in a
natural way. For example, selective serotonin reuptake inhibitors
(SSRIs), which present the most commonly used antidepressants,
can be prescribed for anxiety disorders4 as well, while second-
generation antipsychotics such as risperidone are effective in
treatment of depression and anxiety5.

Clearly, a classification system for neuropsychiatric medica-
tions that is based on the pharmacological and molecular action
and the resulting neurobehavioral changes would be more
appropriate. Many compounds interact with multiple targets
leading to more complex modes of action6,7. Thereby, the loca-
lized molecular effects are not transformed to higher spatio-
temporal scales in a trivial manner and potentiating effects at the
molecular level may diminish or even have inhibitory impact on
the network systems level. Moreover, the causal links between the
complex multivariable molecular processes modulated by a drug
and the resulting neurobehavioral effects are largely not under-
stood. Thus, a focus on molecular modes of action by receptor
pharmacology can only go so far in explaining drug effects on
CNS, given it does not fully consider multiscale effects on brain
biology8. Several biological and chemical databases for ther-
apeutic and experimental drugs have been constructed. In parti-
cular, databases such as the National Institute of Mental Health
Psychoactive Drug Screening Programme9, Receptoromics10,
Drug Voyager11, PubChem12, Ligand Expo13, ZINC14, STITCH15

and KEGG DRUG16 have been developed that integrate diverse
information such as compound structures, drug targets, and
molecular pathways modulated in a biological system. While
these databases provide useful information for drug discovery and
repurposing processes, they focus on the chemical and molecular
level (i.e. drug A binds to receptor B) and also do not address how

the molecular drug effects relate to the diverse multi-dimensional
neurobehavioral changes observed on the organism level.

Hence, using multimodal dimensions related to pharmacolo-
gical and clinical domains and molecular modes of action, a
taskforce composed by experts from different societies on Neu-
ropsychopharmacology has developed a modified system, the so-
called Neuroscience-based Nomenclature17, to replace indication-
based classifications such as ATC.

Here we provide a novel evidence-based characterization of
neuropsychiatric drugs at a systems level. On the systems level of
neurotransmitters we have integrated all published information
on the spatio-dynamical changes in neurochemistry as measured
by microdialysis following acute drug application in rats. In vivo
microdialysis is a crucial method to characterize the quantity
neurotransmitters and their metabolites, neuropeptides and
hormones within interstitial tissue fluids18 following different
pharmacological manipulations19, and as such reflects very well
the spatio-dynamical changes in neurochemistry following acute
drug application. We present all extracted data in a large data-
base, Systematic Pharmacological Database or Syphad, and use a
set of chemoinformatics tools20,21 with which causal links
between the polypharmacology of neuropsychiatric drugs and
their effects at systems level are semi-quantitatively established.

Results
The Syphad database summarizes neurochemical responses of
neuropsychiatric drugs. Systematic literature search identified
the neurochemical response patterns that represent drug-induced
changes in extracellular concentrations of 59 neurotransmitters,
modulators, neuropeptides and metabolites within a network of
117 brain regions stretched over both hemispheres. In total,
neurochemical response data from 258 clinically approved and
experimental neuropsychiatric are provided in an open-access
online platform called Systematic Pharmacological Database or
Syphad [www.syphad.com]. The data was retrieved using auto-
matic keyword-based search (with a search string length of 360
keywords and 13,608 keyword combinations) and manual grey
search on electronic databases. In the first search step 214,288
abstracts, titles, or both were identified from original publications.
Out of these, 15,777 studies were relevant for data mining and
data from 3383 original research articles on in vivo microdialysis
in rat brain (covering studies involving 110,674 rats) were
selected for the meta-analyses and subsequent database creation
(Fig. 1).

Syphad contains 10,510 unique 18-dimensional vector numer-
ical and nominal entries (Supplementary Data). Thereby, each
vector contains data in five categories. The first category contains
the Pubmed identification number (PMID) as well as the number
of animals used in a particular published study, where the PMID
uniquely assigns every vector to the original publication and
where the number of animals is a measure for the robustness of
experimental observations and thereby serves as the weight for
subsequent meta-analysis (see methods section). The second
category contains biologically relevant data, including strain, sex,
age, state of consciousness, i.e., awake/freely moving or
anesthetized (and if so agent and dose), brain region and
neurotransmitter system. The third category relates to the
microdialysis setup parameters, namely perfusate, its calcium
concentration and the flow rate of the perfusion. The fourth
category contains the drug designation, dose of the drug as well as
route of administration. Thereby, this data category represents
the experimental input, while categories 2 and 3 are the model
covariates. The fifth category is the experimental output by means
of dynamics and magnitude, i.e., the time-point at which the drug
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induces its maximum effect (peak time) and the effect size
normalized to baseline concentration levels (peak%BL).

Data distribution in Syphad. In all, 40 out of the 59 neuro-
transmitters, modulators, neuropeptides and metabolites in
Syphad have at least five unique entries, which in total represent
99.6% of all entries. Thus, the remaining 0.4% of all entries
represent 19 neurochemicals in the database. This under-
representation of a large proportion of neurochemicals (mostly
large peptides) is explained by technical limitations of the
microdialysis technique and the adjunct detection method.
Especially large neuropeptides such as substance P, corticotropin-
releasing hormone, ß-endorphin, dynorphin or somatostatin are
extremely difficult to detect22 and therefore fall into this category.

The vast majority of included studies have collected data
related to monoamines and their metabolites. Thus in Syphad,
78.7% of the unique entries relate to monoamines and their
metabolites (dopamine 38.1%, 5-HT 18.7% and their main
metabolites DOPAC 10.3%, HVA 7.6%, and 5-HIAA 4.0%).
Thereby, a total of 56.4% of entries relate to both, measurements
in striatum (3670 in absolute terms) and nucleus accumbens
(3150). In contrast, noticeably fewer studies reported measure-
ments of the main excitatory and inhibitory transmitter systems
(acetylcholine 6.3%, glutamate 3.4% and GABA 1.9%). This
observation demonstrates a general skewness of microdialysis
studies that is also reflected in the Syphad database. Included
studies date back as early as 1984. 96% of the database entries
relate to male, 80% to adult and 89% to freely moving animals,
while 60% and 30% of entries provide data for Sprague-Dawley
and Wistar rats, respectively.

Database sensitivity analysis. Sensitivity analyses with respect
to covariates were performed to ensure the robustness of the
meta-analysis. For 5.4% of drugs in the database (i.e. 14 out of
258), microdialysis experiments were conducted using female
animals and in 1.9% of cases, a statistical analysis of sex as a
covariate was possible. For amphetamine 0.2–5 mg/kg (p > 0.05
for all doses), apomorphine 1 mg/kg (p= 0.49), cocaine 10 mg/
kg (p= 0.99), methamphetamine 3 mg/kg (p= 0.66) and ven-
lafaxine 20 mg/kg (p= 0.29) one-way ANOVA did not show
any significant differences between male and female animals.
Apart from a few exceptions, there were no systematic differ-
ences in drug-induced changes in neurotransmitter

concentrations with respect to other biological covariates, age
and strain. Risperidone (0.1 mg/kg) increased dopamine con-
centration in prefrontal cortex in adolescent rats by 170% larger
than adult animals (p= 0.0003, one-way ANOVA). Adminis-
tration of 10 mg/kg cocaine increased dopamine concentration
in adolescent animals by 306 ± 3% and thus, significantly less
(p < 0.05, one-way ANOVA) than in adult rats (371 ± 0.2%).
Strain as a covariate did not affect the robustness of meta-
analyses but in a few exceptions (0.9% of entries). Different
doses of clozapine affected dopamine levels in prefrontal cortex
and striatum in a nonlinear manner in both Sprague-Dawley
(SD) and Wistar animals; however, the one-way ANOVA
suggests that changes induced by doses of 10 and 20 mg/kg were
more pronounced in Wistar than SD rats (p < 0.01). In com-
parison with SD rats, 3 mg/kg of paroxetine induced a twofold
stronger increase in 5-HT concentrations in the frontal cortex
of Wistar rats (p < 0.05). However, dopamine metabolites
(DOPAC and HVA) in nucleus accumbens in response to 5 mg/
kg morphine, but not other doses (p < 0.01), and to 5-HT in the
frontal cortex in response to 10 fluoxetine (p < 0.0001) in SD
rats were enhanced significantly more than in Wistar rats.

We finally analysed the reproducibility of neurochemical
response assays in the database by correlating experiments of
identical conditions (that is, measured for the same drug,
transmitter, region, dose, route of administration and time
parameters). To do this, response measurements were converted
to 1 or 0 for up- or downregulation (above or below the 100%
baseline, respectively), and the standard deviation was subse-
quently calculated on a per-compound basis. Overall 98.8% of
experiments resulted in the same response vector with an average
of 0.13 ± 0.08 between the standard deviations across compounds,
and a median of 0.0, which hence indicates that there is strong
reproducibility (considering up/down regulation) across micro-
dialysis assays and provides confidence to conduct further
analyses with this database.

ATC codes and neurochemical response correlate only weakly.
We first investigated whether ATC classifications and neuro-
chemical response patterns in different brain regions were cor-
related, and if so, to which extent the current classification has a
sound neurochemical basis. This analysis compares the neuro-
chemical response patterns of compounds extracted from Syphad
in the form of a bit arrays (as described above—represented by 1

Identified publications since 1984 (214,288)

Title/abstract screening (15,777)

Inclusion criteria

Included studies (3838)

Brain region | Transmitter

Effect (%) | Response time

Covariates

Primary variables

Data extraction Sensitivity analysis

Cluster analysis

Machine learning

Fingerprints

Weighted by number
of animals

Effect of drug X | dose Y

Brain region | Transmitter

Drug | Dose
combination

Publication data

Fig. 1 Flowchart of data mining, extraction and fingerprint generation procedures. Keyword-based search of online databases and manual grey search of
literature identified 214,288 publications since 1984, out of which 15,777 were screened for content. Three categories of data were extracted from
3838 studies that fulfilled the inclusion criteria (microdialysis AND rat AND brain AND systemic drug administration). For each drug, dose pairing, the
normalized effect was calculated as a meta-analysis weighted by the number of animals used in each study and the robustness of the values were
estimated by sensitivity analysis with respect to covariates such as age, strain, sex and microdialysis parameters. The data was then transformed into bit
arrays which represent the neurochemical response fingerprints within the neurochemical connectome of the rat brain
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or 0 bits, respectively), which are described in detail within the
Data Transformation section in Methods. The bit array repre-
sentations of response patterns were generated for 1813 experi-
mental measurements covering 44 distinct brain regions and 59
neurochemical components, of which 1034 (~57%) and 799
(~43%) of the measurements are considered upregulated and
downregulated (above 100% or below the baseline control),
respectively. Based on the Tanimoto coefficient (Tc) similarity
calculated for drug-induced neurochemical alterations, our find-
ings (Fig. 2a) show whether compounds with similar codes more
often exhibit similar neurochemical response patterns (intra-ATC
code similarity) compared to other compounds across other ATC
classifications (inter-ATC code similarity). Tanimoto similarity is
commonly used in the cheminformatics field for compound
fingerprint-based similarity calculations23,24, where a maximum
score of 1.0 represents two compounds with complete overlap

between their (shared) experimental neurochemical-brain
response profiles, and a score of 0.0 represents two compounds
with no overlap. Thereby, the term fingerprint stands for the
above-mentioned bit array representation of the neurotransmitter
response pattern. The results comprise 9688 and 19,736 intra-
and inter-similarity comparisons, respectively, and illustrate
(Fig. 2a) that compounds within ATC classes show a higher
median of Tc similarity for neurochemical-brain response pat-
terns, of ~0.43, compared to compounds between ATC classes,
where the median similarity is ~0.33. The two comparisons,
however, consist of many extreme values, as outlined by
their stretched u-shape distribution. A two-sided
Kolmogorov–Smirnov test gave a p-value <0.001 (6.31e-56)
showing that the two sets of similarities are significantly different,
which indicates that ATC codes indeed do correlate with com-
pound mechanism in terms of neurochemical response to a
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Fig. 2 Neurochemical similarity analysis. a Intra- and Inter-ATC code similarity of neurochemical response patterns across brain regions. Distributions are
shown using kernel density estimation (KDE) with median similarities identified by the red marker and via the underlying boxplot with the notch denoting
median, the outer boxes denoting the lower and upper-quartile ranges and the jitter scatter plot outlining the underlying observations. Compounds within
the same ATC classification (intra-similarity) exhibit higher median similarity in neurochemical response than between ATC codes (inter-similarity), with a
median response fingerprint Tanimoto coefficient’s of 0.43 and 0.33, respectively. The underlying distributions are statistically different with a two-sided
Kolmogorov–Smirnov test p-value of 6.31e-56. However, the similarity distributions are quite wide (interquartile ranges span 0.0 to 1.0 for both intra- and
inter-similarities), with large overlap. Hence, ATC codes could also be considered to be not very meaningful descriptors of neurotransmitter activities. b
Intra-ATC class similarity of the neurochemical and chemical fingerprints of compounds for ATC classes with 4 or more representative compounds. The
number of compounds underlying each distribution is denoted using (N= ), with the underlying distribution shown using KDE, the median shown via a
solid red line and the underlying observations shown via the black stick markers. Our results highlight there are significant differences between different
ATC classifications. N.B.: Only ATC classifications with N≥ 4 (~3% of drugs in the database) are shown. The so-called combined subset category shows
the distribution of the combined subset across the eight ATC classes shown and number of distinct compounds
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statistically significant extent. However, the wide distribution
range of the two similarities suggest that this finding is not robust.
With standard deviations of ~0.42 and ~0.45 for intra- and inter-
class similarities, respectively, and a significant number of com-
pound pairs from the same ATC class showing no similarity on
the neurotransmitter response level whatsoever, ATC codes seem
not to capture the neurochemical effects of drugs in all cases.

Furthermore, we conducted a sensitivity analysis to investigate
the robustness of the similarity analysis to characterize the impact
of any bias towards certain ATC codes towards the overall
distribution. Combinatorial exclusion of ATC codes induces a
standard deviation of <0.01 and 0.02 between the median inter-
and intra-class similarities, which suggests robustness of this
intra- and inter-class similarity analysis.

Chemical structure and transmitter changes correlate weakly.
We next investigated whether chemical structure and neuro-
chemical response are more conserved within ATC classes, which
to an extent would be suspected, both due to related modes of
action and the tendency of pharmaceutical industry to generate
so-called me-too drugs25. Figure 2b outlines the results from our
analysis when aggregating the previous neurochemical response
profiles by ATC codes with four or more representative com-
pounds and contrasting these distributions with the similarity of
compounds using chemical structural descriptors, namely
extended connectivity fingerprints (ECFP_424). Eight ATC codes
included sufficient compounds, a subset of which comprises 58
distinct compounds providing 452 similarity comparisons. There
are generally significant differences between neurochemical and
chemical spaces across ATC classifications (the ‘Combined sub-
set’ column), although this distribution differs significantly
between ATC classes.

One class where neurochemical responses are rather similar,
while chemical structures differ widely, is ATC code A08A
(antiobesity preparations). For this classification we found the
highest intra-class neurochemical response similarity (median
Tanimoto coefficient of ~0.82), while compounds were still
exhibiting among the lowest similarity in structural fingerprint
(bit array representation) space (median Tanimoto coefficient of
~0.1). Hence, similar neurochemical response does not generally
imply similar chemical structure.

This applies also to the class of antipsychotics drugs (N05A),
which shows a neurochemical response similarity with a high
median Tanimoto coefficient of ~0.52, but low chemical structure
similarity with a median Tanimoto coefficient of ~0.18. This
finding is not surprising on a target level when considering that
for the last half-century, almost all approved antipsychotic drugs
have affinity for the dopamine D2 receptor as an apparently
essential aspect of their mechanism of action, and also due to the
biased (me-too) nature of antipsychotic medicine discovery26.
However, the apparent diversity of modes of action on the
neurochemical level in this compound class (represented by the
wide distribution and median Tanimoto coefficient of ~0.52) is
far more diverse than the simple requirement of activity on the
D2 receptor would suggest, a finding which is not apparent from
the protein-based activity definition.

Other examples for large mismatches between neurochemical
response similarity and chemical structure similarity relate to the
classes of hypnotics and sedatives (N05C), with the second
highest neurochemical response fingerprint of ~0.75 vs. the
lowest median chemical response fingerprint of ~0.1. Antide-
pressants (N06A) also show large differences in the ranking of
neurochemical and chemical spaces (with median Tanimoto
coefficient ~0.5 vs. ~0.13) along with psychostimulants (N06B)
(median Tanimoto coefficient of ~0.5 vs. ~0.22) (Fig. 2b).

Thereby, analysis of the inter-class similarity between the
neurochemical response and chemical structures suggests that
inter-class compounds are generally dissimilar in both neuro-
chemical response and chemical structure similarity (overall
median Tanimoto coefficients of ~0.33 and ~0.10, respectively).
Thus, chemical similarity and/or identical ATC use classes do not
relate to the action of drugs in an identical or similar manner on
the neurochemical level (and vice versa).

Frequency of neurotransmitter-brain region pair response. The
mode of action of a drug is not only determined by its change in a
particular neurotransmitter, but also by the brain sites the neu-
rochemical events take place; here referred to as the spatial
neurochemical response pattern. Thus by calculating the fraction
of times compounds administrated within the same brain regions
elicit up- or downregulation of neurochemical response, we
investigated whether particular brain regions show more frequent
neurochemical responses to drug treatment than others. The
results of the analysis, displayed in Fig. 3, suggests that neuro-
transmitters such as dopamine (DA) have a high frequency of
upregulation across different brain regions, where 21 of the 26
measurements (~80%) exhibited a fraction of upregulation above
50%. In other words, dopamine responds frequently and largely
in a non-specific manner with respect to applied drug or mea-
sured brain regions. This result can be contrasted with GABA,
which has a higher frequency of downregulation across 9 of the
14 brain regions for which data is available.

In order to illustrate this point on an individual compound
level, hierarchical clustering of compound activity across brain
region and neurotransmitters was performed (Fig. 4 & Supple-
mentary Fig. 1). The analysis suggests that drugs from the same
ATC class rarely cluster, illustrating that ATC class and changes
in neurotransmitter levels across different brain regions are only
very weakly correlated. One prominent example relates to the
selective serotonin reuptake inhibitors paroxetine and citalopram
(ATC codes of N06A) that separate into two distinct branches of
the dendrogram. This indicates that despite their similarities in
clinical use27,28 and molecular modes of action, there are
significant differences with respect to their effects at the brain
region and neurotransmitter level. To an extent, this might be
explained by the more selective inhibitory activity of citalopram
on serotonin reuptake27, where paroxetine also affects acetylcho-
line and noradrenaline reuptake; on the other hand, even the
antihypertensive MAO-A inhibitor pargyline is found to be more
similar in neurochemical response space to paroxetine than
citalopram, which illustrates that ATC codes and effects on
spatial neurochemical response patterns do not well agree with to
each other in case of this set of compounds.

Linking drugs with their predicted molecular interactions. To
study the relationship between spatial neurochemical response
patterns and key molecular drug–target interactions, we next
investigated which bioactivities of a drug against protein targets
are more frequently associated with neurotransmitter level
changes across brain regions. This analysis is based on in silico
protein target predictions29 for compounds in Syphad, where
computationally, based on large bioactivity databases, a complete
putative ligand-target interaction matrix is generated. Only
models trained with rat bioactivity data were used since this is
where the experimental data from Syphad is derived, and pre-
dictions were only generated for those targets expressed in brain
tissue. Complete details on the in silico protein target prediction
and model selection are provided in the Methods section on
“Compound analysis based on experimental data”. Overall pre-
dictions were available for 100 in silico rat targets, given the
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aforementioned filtering, yielding 258 drug × 100 possible
drug–target interactions. As to date only ~1.7% of the drug–target
interaction matrix have been experimentally determined for the
drugs, thereby providing a rationale to conduct this analysis using
in silico protocols. The systematic analysis (Fig. 5 & Supple-
mentary Fig. 2) outlines that the proportion of times (averaged
percentage hits) that targets were predicted is modulated by
compounds eliciting response at corresponding neurochemical
components. The most associated targets (ranked by top hit
percentages) and their respective neurochemical components
from this analysis are presented in Table 1, which can be used as a
reference for future experiments to confirm our novel links
between targets modulating neurochemical signalling. Twelve of
the top 25 identified protein target-neurotransmitter relationships
are already supported by the literature, and a further three are
identified in the literature as specific candidate genes requiring
confirmation. For example, alpha 1 adrenoceptor (ADRA1B)
activation potentiates taurine response mediated by protein
kinase C in substantia nigra neurons30; opioid antagonism of
opioid receptor delta 1 (OPRD1) modulates oxytocin levels31; and

ligands of muscarinic 4 (CHRM4) and muscarinic 5 (CHRM5)
receptors are known to regulate dopamine transmission32. The
analysis also provides the identification of novel ways of mod-
ulating neurotransmitter levels by connecting target and neuro-
transmission response spaces, such as the predicted link between
glutamate ionotropic receptor NMDA type subunits (GRIN2A
and GRIN2C, GRIN2D and GRIN1) and the target-dependent
regulation of kynurenic acid (KYNA) or serotonin/melatonin
precursor tryptophan (TRP). The analysis was further conducted
based on the aggregated protein target prediction rates across
brain regions (instead of neurotransmitter), highlighting clusters
of brain region and protein target tuples, and hence a general
correlation between compounds targeting specific proteins more
frequently modulating neurochemical response within specific
brain regions (Fig. 6). Findings from this analysis can also be used
in a similar manner to the previous neurochemical component
analysis, that is, to direct future biochemical experiments and
inform which microdialysis assays should be performed to cor-
roborate our putative links between targets modulating response
within brain regions.
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In silico predicted molecular drug–target interactions. To
investigate if the predicted drug–target interactions better reflect
brain region related neurochemical response than ATC codes on
a quantitative level, we calculated the averaged (mean) degree of
mutual information (as outlined in the Methods section “Mutual
information analysis”) of either ATC codes or predicted protein
target spaces with drug-induced changes in extracellular neuro-
transmitter concentrations. Mutual information is a measure used
in bioinformatics to describe the similarity (or dependence)
between two features (here either an ATC code or protein
annotation versus neurochemical response) in a dataset33. A score
of 1.0 represents the situation when two features are perfectly
dependent (and hence the information about the neurochemical
response of a compound can be perfectly derived from either the
ATC code or protein target prediction). In turn, a score of 0.0
represents mutual independence between the features. Overall
findings averaged across ATC codes and protein targets (shown
in Fig. 7) suggest that the two sets of mutual information scores
are relatively similar in terms of their median distribution, with
scores around ~0.623, which would initially indicate that ATC

codes indeed do correlate with compound mechanism in terms of
neurochemical response. However, the distributions of predicted
protein target mutual information are wider (standard deviation
of 0.010 vs. 0.007), with a significantly larger tail towards higher
mutual information scores, achieving values of up to 0.68. Thus,
this finding supports the view that certain predicted drug–target
interactions are more appropriate indicators of brain region
related neurochemical changes.

To outline the robustness of our findings, we analyse the extent
of biases towards particular ATC codes or targets which may
affect the distribution of mutual information scores. Thereby, we
explored the degree to which the median mutual information
score obtained is shifted upon leaving each ATC code or target
model out of the bit array representations. Our results show there
is a standard deviation of <0.01 and 0.01 between the median
neurochemical response mutual information scores versus the
ATC and protein prediction fingerprints, respectively, and hence
the findings are robust towards variations.

Based on this finding, we next analysed the five ATC classes
with the highest mutual information (i.e. the most informative
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Fig. 5 Systematic analysis of bioactivities against protein targets associated with neurochemical changes. A larger percentage (red) indicates which protein
targets are more often predicted to be targeted by drugs which change a given neurotransmitter level. Target families are shown to frequently cluster
together, due to their similarity in bioactivity profiles (i.e. compounds which elicit neurochemical response more frequently interact at a complement of
targets within protein families), as illustrated by the voltage-gated sodium channel Alpha subunit 1 and type III subunit (SCN1A and SCN3A) and the
cholinergic muscarinic receptors 4 and 5 (CHRM4 and CHRM5) also corroborated in literature56,57. N.B.: Only drug targets that are clustering to at least
three neurochemicals are listed here

Table 1 Systematic analysis of the links between neurochemical components and predicted targets

Neurochemical component Predicted target gene Predicted target name Reference link

Choline ABCC2 ATP-binding cassette subfamily C member 2 Putative
GRIN2A Glutamate receptor ionotropic, NMDA 2A Candidate58

GRIN3A Glutamate ionotropic receptor NMDA type subunit 3A Putative
Dihydroxyphenylalanine CHRM1 Muscarinic acetylcholine receptor M1 Confirmed59

CHRM4 Muscarinic acetylcholine receptor M4 Confirmed32

CHRM5 Muscarinic acetylcholine receptor M5 Confirmed32

Dihydroxyphenylethylene glycol HTR1A 5-hydroxytryptamine receptor 1A Confirmed60

HTR2C 5-hydroxytryptamine receptor 2C Confirmed60

HTR5A 5-hydroxytryptamine receptor 5A Putative
Kynurenic acid ABCC2 Canalicular multispecific organic anion transporter 1 (ATP-binding cassette

subfamily C member 2)
Putative

CAMK2A Calcium/calmodulin dependent protein kinase II alpha Candidate61

CAMK2B Calcium/calmodulin dependent protein kinase II beta Candidate61

GRIN1 Glutamate receptor ionotropic, NMDA 1 Putative
GRIN2A Glutamate ionotropic receptor NMDA type subunit 2A Putative
GRIN2B Glutamate ionotropic receptor NMDA type subunit 2B Putative
GRIN2C Glutamate ionotropic receptor NMDA type subunit 2C Putative
GRIN2D Glutamate ionotropic receptor NMDA type subunit 2D Putative
HTR5A 5-hydroxytryptamine receptor 5A Putative
PRKCZ Protein kinase C zeta type Putative

Oxytocin DRD5 Dopamine receptor D5 Confirmed62

OPRD1 Opioid receptor delta 1 Confirmed31

OPRK1 Opioid receptor kappa 1 Confirmed31

Taurine ADRA1B Alpha-1B adrenergic receptor Confirmed30

DRD5 Dopamine receptor D5 Putative
Tryptophan ABCC2 Canalicular multispecific organic anion transporter 1 (ATP-binding cassette

subfamily C member 2)
Putative

The table contains links between neurochemical components and protein target predictions with a 100% hit rate—i.e., every compound active at that neurotransmitter were predicted to interact with
these targets. The links identified from bioactive compounds from the in silico target prediction protocol are shown along with any literature evidence. Putative links and pre-identified candidate links can
be the focus of future neuro-biochemical studies
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variables on a per-ATC code basis) across the ATC classes
(Fig. 8a) and the five protein targets providing the highest mutual
information score, respectively, to identify which specific
variables are most predictive of neurochemical response. It can
be seen that the mutual information scores from the top 5 ATC
classes comprise a bell-shaped distribution with averaged median
values of ~0.07. In comparison, the top 5 informative predicted
protein targets (Fig. 8b), possess higher mutual information
compared to the aforementioned ATC classes, with a longer tail
and a larger overall median of ~0.09. Hence the predicted protein
targets possess higher mutual information with the neurochem-
ical response of drugs than ATC classes. The most informative
target is muscarinic cholinergic receptor 1 (CHRM1) based on the
mutual information score, and although this was identified as an
apparently promiscuous target in the previous analysis (since it
was predicted to bind in an unspecfic manner to many different
compounds that are active across regions and neurochemical
components), hence indicates that there are specific interactions
linked to CHRM1 that are predictive of specific neurochemical
changes. Four of the highest ranked protein targets with respect
to mutual information are linked with the serotonin receptor
(HTR1A, HTR2C and HTR2A) or dopamine receptor (DRD5),
which outlines how drugs binding to the group of protein targets
linked with dopamine and serotonin (and their metabolites)
produce more consistent neurochemical profiles, within certain
brain regions at certain neurochemical components.

Discussion
Current categories for the classification of psychiatric drugs are
based on clinical consensus that is based on an earlier period of
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Fig. 7 Mutual information between ATC codes and target prediction spaces
with neurotransmitter response. The averaged (mean) mutual information
across ATC codes and predicted targets is shown using kernel density
estimation, with the median denoted by the white marker and the lower-
and upper-quartile ranges shown using the thicker central lines. Overall,
there is little difference between median mutual information scores with
scores around ~0.630 and ~0.628, respectively. However, the underlying
distributions are statistically different, with a two-sided
Kolmogorov–Smirnov (KS) test p-value of 3.70e-4, and target prediction
fingerprints comprise a larger standard deviation (0.010 vs. 0.007) in
mutual information scores, spanning to scores over ~0.68. Hence, taken
together we can also consider that there are specific targets which remain
statistically more predictive of neurochemical response over ATC classes
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scientific understanding34. Here, we present a database built on
multiscale neurochemical response patterns for therapeutic and
experimental neuropsychiatric drugs that may pave the way for
evidence-based classification strategies. The Syphad database
assembled here will be essential for conducting studies in the field
of neuropsychopharmacology as those studies rely on a precise
understanding of the drug-induced neurochemical response
patterns at systems level.

By applying chemoinformatics tools20,21 we demonstrate the
power of the Syphad database where we revealed links between
molecular drug–target interactions and changes in neuro-
transmitter concentrations at connectome level. The complexity
of brain diseases has led to recent interest in polypharmacology,
which suggests that many effective drugs specially modulate
multiple targets. In this respect, a drug that “hits” multiple sen-
sitive nodes belonging to a network of neurotransmitter systems
and interacting targets offers the potential for higher efficacy and

may limit drawbacks such as side effects generally arising from
the use of a single-target drug or a combination of multiple
drugs35. Our combined big data-chemoinformatics approach
enhances the current understanding of the polypharmacology of
neuropsychiatric drugs and contributes critically to the drug
development and repurposing strategies. We further propose
novel ways of modulating neurotransmitter levels by predicting
target proteins. Based on those target predictions, our analyses
suggest a mismatch between the current classification of neu-
ropsychiatric drugs, spatiotemporal neurochemical response
patterns at systems level, and drug–target interactions. In parti-
cular, our findings challenge the current view towards the
dopaminergic system as a potential biomarker for psychiatric
diseases.

Biomedical research has neglected many specific aspects of the
health needs of women. This bias that is also reflected in Syphad
as ∼96% of all studies were conducted on male animals. This may
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Fig. 8 Top five most informative ATC classes based on neurotransmitter response patterns. a The top 5 informative codes ranked by median score are
shown using kernel density estimation (with the lower- and upper-quartile ranges shown using the thicker central lines), which highlights which ATC
classes are most correlated with neurochemical response. The distributions comprise a bell shape around scores of ~0.1. Classes are ranked left to right in
descending order of median mutual information scores. b Top five most informative protein targets based on neurochemical response fingerprints. The
distribution of the top 5 targets are shown using kernel density estimation (with lower- and upper-quartile ranges shown). and appear to be more
informative than compared to the top 5 most informative ATC classes, since they comprise wider peaks around scores of ~0.5. Hence the most informative
predicted protein targets appear to more predictive of neurochemical response then compared to the top ATC codes. Four of the top five targets are
serotonin (HTR1A, HTR2C and HTR2A) or dopamine (DRD5) receptor related. Targets are ranked left to right in descending order of median mutual
information scores
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partly originate from the assumption that females, due to the
cyclic reproductive hormones, are more variable than males. Sex-
specific differences have been reported previously in local basal
concentrations of neurotransmitters such as norepinephrine in
thalamus36, striatal dopamine37 and acetylcholine in medial
prefrontal cortex of rats38, which may indicate differing responses
to psychiatric drugs. Statistical comparison of normalized effect
sizes with sex as a covariate was only possible for a very small
subgroup, but did not show any significant differences between
males and females. The skewness and sparsity of the data dis-
tribution limits the possibility to derive robust and reliable ana-
lytic results with respect to sex-specific differences and larger
samples and test groups are required to obtain reproducible
conclusions.

The drug classification system proposed in this work is built on
region-specific multiscale neurochemical response patterns;
however, it faces several limitations. Firstly, although our data-
base derives from all published microdialysis measurements of
drug-induced neurochemical alterations, the overall database has
only a completeness of 2.6% when using the coarse (broad)
ontology, as defined by the number of measured compound-brain
region tuple data points divided by the total number of potential
observable data points in the matrix. Over time the database will
be enlarged by integrating new studies which will allow for a
more precise compound classification. Secondly, the database
contains an a priori skewness of data since almost 80% of all
studies focus on monoaminergic systems, especially dopamine,
while the most dominant excitatory and inhibitory neuro-
transmitters in the brain, glutamate and GABA, were only studied
in 5% of the cases in total. This misbalance and overemphasis on
dopaminergic neurotransmission may lead to an over-
interpretation of the relevance of dopamine for pharmacother-
apy of neuropsychiatric diseases. This effect may further suppress
the identification of other transmitter systems for therapeutic
purposes. Thirdly we do not know how well the neurochemical
response patterns defined here for the rat brain translate to the
human situation. However, rats provide a good model organism
for testing the pharmacological action of drugs39 and several
microdialysis studies in rats showing changes in transmitter
release were replicated in humans using positron emission
tomography (PET)40,41 or spectroscopy42. These similarities in
rat and human brain on drug-induced neurochemical responses
suggests construct validity of our database. Finally, the current
content of our Syphad database relates to neurochemical
responses to acute treatment with neuropsychiatric drugs, which
may differ from clinical observations, since patients often receive
chronic treatment for months and the drug effects only emerge
after weeks of treatment. Hence, predictive validity is dependent
on the inclusion of chronic dosing regimens, whereas acute-only
results may be misleading for clinical interpretations. In parti-
cular, chronic administration of drugs such as ethanol43, SSRI
antidepressants44 and antipsychotics45 suggest that the effects
may differ in dynamics and magnitude, sometimes even opposing
to the acute drug effects. Therefore, particular care is advised in
applying the database or the analytic findings of our study in a
clinical context. Nonetheless, analysis of acute drug effects is not
only a critical assessment tool for the potency of neuropsychiatric
drugs in generating systemic effects but also to understand the
brain function. Syphad facilitates such approaches by integrating
the body of publications at large into a consistent framework that
synergizes the cumulative knowledge of the past four decades of
neuropsychopharmacology research.

In conclusion, Syphad is the first big data approach in the field
of neuropsychopharmacology to systematically integrate existing
information into a unified framework. Thereby, it sets a milestone
towards evidence-based classification of CNS active drugs and

thus, improves our understanding of the underlying neurobio-
logical processes of neuropsychiatric diseases.

Methods
Search strategy. The online portal of the National Library of Medicine [http://
www.ncbi.nlm.nih.gov/pubmed/] including PubMed, PubMed Central and MED-
LINE was used as the platform for literature research. A systematic screening of the
original research articles published until 01.01.2016 was performed based on the
keywords rat (AND) microdialysis (AND) (brain region (OR) neurotransmitter
(OR) metabolite (OR) neuropeptide) (AND) (drug (OR) antidepressant (OR)
anxiolytic (OR) psychostimulant (OR) sedative (OR) hypnotic (OR) antipsychotic
(OR) neuroleptic.) The keyword neurotransmitter is a general representative in the
search string which was replaced by the actual name and/or abbreviation of
transmitters and metabolites (e.g., dopamine, glutamate, HVA etc). Additionally,
separate searches were conducted substituting the keywords “drug”, with the
International Nonproprietary Name (INN) of all clinically approved and experi-
mental neuropsychiatric drugs. If INN names were not assigned yet, USAN
(United States Adopted Name) or BAN (British Approved Name) names were
chosen. The full keyword-based search string was performed based on the 16,308
combinations of different brain regions, neurotransmitters and drugs designations
and abbreviations (Supplementary Methods). In addition, the reference sections of
identified papers as well as review and meta-analysis articles were then screened for
further relevant citations.

Study selection. Reviewers, in pairs, independently screened titles and abstracts of
articles and reviewed the full text of any title or abstract deemed potentially eligible
by either reviewer. Reviewers resolved disagreements by discussion. Among these
studies, only peer-reviewed original research articles in English language were
chosen for data mining if they provided the absolute or relative change in neu-
rotransmitter or metabolite concentrations within a brain region either numerically
or in graphical manner. We excluded articles using animals other than rats. All
selected studies were performed in outbred rats with no specific genotype or
phenotype or provided data for a wild-type control group were included. Fur-
thermore, animals did not receive any behavioural training prior to drug treat-
ments. Abstracts and unpublished studies were not included. Authors were
contacted if critical information was missing or only partially provided in their
articles.

Data extraction. The following variables were extracted from the published studies
by applying a structured template:

Biological variables: strain, sex, state of consciousness, i.e., awake or
anesthetized (anaesthetic agent and the dosage), age, and number of animals used
in each experiment.

Experimental procedure variables: coordinate of probe placement, sample time
(min), flow rate (µl/min), membrane length (mm) of microdialysis probes, calcium
concentration in perfusate (mM) and type of perfusate (e.g. Ringer solution),
targeted brain region, neurochemical detection assay, route of drug administration,
drug name and applied dose.

Experimental findings: drug dose effects (%) at time Ti, i.e., for a specific dose of
the drug the absolute or relative changes of neurochemical concentrations within a
brain region were obtained. The drug effects were normalized to the basal levels if
absolute values were provided, in order to obtain relative changes.

Quality assessment. Two factors may have influenced the quality of the dataset:
(1) differences in the drug nomenclature, in particular inconsistencies caused by
reports using trade names of clinically approved drugs instead of INN or the
International Union of Pure and Applied Chemistry (IUPAC) names. However,
this issue was extremely rare and occurred in only two cases that allowed manual
clustering of the drug names into the respective INN. (2) The accuracy, reliability
and completeness of the microdialysis data. We addressed this matter by a twofold
strategy. On the one hand, we conducted several sensitivity analyses (see below) to
quantitatively evaluate the impact of missing effect modifiers, and on the other
hand we conducted meta-analyses weighted by the number of animals used in each
study. While we cannot verify the technical quality of conducted experiments, the
number of animals provides a reliable measure to judge the statistical robustness of
the findings of a study.

Meta-analysis. We conducted the meta-analysis of drug effects (%) using fixed
effect model36,44,46: �x ¼ 1

N

Pk
i¼1 nixi, where �x (effect size) represents the weighted

average value as the weighted sum of the products of the drug effects xi obtained
from each experiment i and the number of animals used in that particular study ni,
and N ¼ Pk

i¼1 ni denoting the total number of animals considered in the meta-
analysis of the k studies.

Statistical analysis. In order to assess the impact of inclusion of any partially non-
independent study on the results, jackknife analyses were conducted iteratively. In
other words, each partially non-independent study on a specific drug-dose-
neurotransmitter-brain region combination was excluded and the weighted average
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was recalculated. Subsequently, χ2 test or Fisher exact test was performed between
the original and the leave-one-out recalculated statistics. Since no individual study
skewed the overall statistics, the presented results are based on all studies. In
addition, OFAT (one-factor-at-a-time) sensitivity analyses were performed a pos-
teriori to ensure the robustness of the meta-analysis results with respect to the
effect modifiers.

Outcomes and effect modifiers. The primary outcomes were matrices describing
the peak changes of a specific neurotransmitter or metabolites (peak%baseline
value) within distinct regions of rat brain for a specific drug–dose pairing.
Inconsistencies in neuroanatomical nomenclature were avoided by using a pre-
viously developed47 supervised machine learning technique to identify synon-
ymous brain areas with respect to cytoarchitecture. A secondary outcome was the
time-course of neurochemical alterations, characterized by the time-point at which
the peak response occurred. Sex, age, strain, state of consciousness (i.e. use of
anaesthesia), number of animals, dose of the drug, technical microdialysis para-
meters such as flow rate and calcium concentration of the perfusate, sampling time
and length of the probe were considered as potential effect modifiers.

Compound analysis based on experimental data. Compounds in the dataset
were annotated with 3rd level (pharmacological subgroup) ATC codes as retrieved
from Drugbank48, which describes the category a drug is assigned to based on
current use (Supplementary Table 1). In all, 90 out of 258 clinically approved and
experimental neuropsychiatric drugs had an available ATC mapping. Activity was
defined as the minimum response recorded across all peak time points for each
compound against a neurochemical component and brain region. A coarse-grained
ontology was also used to employ a broad classification of brain regions, to reduce
the number of brain regions, and to have more data per brain region (Supple-
mentary Table 2). The overall database has a completeness of 2.6% when using the
coarse (broad) ontology, as defined by the number of measured compound-brain
region tuple data points divided by the total number of potential observable data
points in the matrix.

Data transformation. RDKit [http://www.rdkit.org] was used to generate hashed
circular chemical fingerprints24 with a radius of 2 and 2048 bit length. The
resulting bit array describes the presence and absence of chemical features for each
of the drugs in the database, and is a common method to define the chemical
similarity between two compounds49.

For each drug–dose pairing, the primary outcomes (peak%baseline value)
across neurotransmitter-brain region tuples were converted to bit array
representations on a per-compound basis, to describe the neurochemical response
patterns of each drug–dose pairing for comparison. Thus, the effect of different
doses in neurochemical response patterns was explicitly integrated in the analysis.
Each bit (corresponding to an individual experimentally confirmed
neurotransmitter-brain region reading) was set via the following criteria; a bit was
set to 1 if neurochemical response was increased above 100% and set to −1 for a
decrease in response (below 100%).

For many drugs, the dose–response relationship is nonlinear. Therefore, dose
equivalency considerations were omitted and instead machine learning
classification algorithms were applied to characterize the impact of different drug
doses (and indirectly receptor occupancy) in a hypothesis-free manner. Tanimoto
similarity was calculated for the chemical fingerprints and for the neurochemical
bit array representations between compounds within and across each ATC code
using the Scipy http://www.scipy.org function spatial.distance.rogerstanimoto. For
neurochemical response patterns this comparison only considered
neurotransmitter-brain region tuples for which data was available for both
compounds being compared.

Clustering analysis. Hierarchical clustering of the compounds in the database was
performed using the matrix of compound and ATC codes and primary outcomes
(peak%baseline value) within brain region-neurotransmitter tuples using the Sea-
born [https://github.com/mwaskom/seaborn/tree/v0.8.0] clustermap function with
the method set to complete, the metric set to Euclidean.

In silico target prediction. Next, in silico target deconvolution was performed,
to annotate compounds with predicted targets using similarity relationships
between the drugs in the database and identified ligands20,21. The algorithm
output (flowchart outlined in Supplementary Fig. 3) is a probability for activity
(binding) or inactivity (non-binding) on a per-compound basis across
various protein targets. Although this method does not afford the prediction of
the functional effects of compounds (i.e. activation or inhibition of a target),
this analysis is useful since it enables the extrapolation of compound structure
into bioactivity space and hence the identification of novel biological
mechanism s to our analysis. This is particularly relevant, since there are
incomplete bioactivity profiles for the full complement of protein targets
expressed in the rat brain across all drugs in the database, and thus important
proteins linked with biological activity are potentially unidentified. Four hun-
dred and fifty-five drug-target bioactivity data points have been experimentally
determined for the 258 drugs. Hence, if considering 100 protein targets are

expressed in the rat brain with an available bioactivity prediction model (full
model details outlined in the next section), provides a completeness of only
~1.7% across 25,800 potential data points when using only the experimentally
determined bioactivity matrix. By including in silico target predictions we can fill
this (putative) bioactivity matrix completely, albeit with the knowledge that
some of the predictions may not be accurate. This is in more detail described in
the following.

To annotate the drugs in the database with their respective protein targets, we
used the rat models available in PIDGIN version 250 on a per-compound bases.
Previous benchmarking results have shown such in silico protocols perform with
an average precision and recall of ~82% and ~83%, respectively, during fivefold
cross validation20, hence giving a reasonable likelihood that compounds predicted
to bind a particular target will indeed bind to this protein, or set of proteins. We
used a probability threshold of 0.5 to generate predictions in this work, where the
predictions correlate for 319 of the 445 experimentally confirmed
compound–target pairs for the drugs in our database (precision and recall of ~97%
and ~84%, respectively). Importantly, the predictions from this analysis do not
significantly contradict experimental results or significantly alter core findings
when compared to an analysis consisting of entirely experimental biochemical data.

Predicted protein targets were filtered for those expressed in brain tissue as
defined by the Human Protein Atlas51, since region-specific genes have been shown
to be conserved between both human and rat at the sequence and gene expression
levels52. The following query was specified on the brain-specific proteome section
of the resource: “tissue_specificity_rna:cerebral cortex;elevated AND sort_by:tissue
specific score”, providing 1437 targets with elevated expression in the brain
compared to other organs (described from mRNA measurements and antibody-
based protein experiments to identify the distribution of the brain-specific genes
and their expression profiles compared to other tissue types53). Overall, 100 of the
515 (~19%) of the rat target models were retained after this filtering step (full list
provided in Supplementary Table 3).

The proportion of drugs (eliciting neurochemical response) that were
predicted to bind to a certain target within each neurotransmitter-brain region
tuple (versus the predictions for all other drugs) were calculated, and used to
identify correlations between brain location or neurotransmitter and molecular
target spaces. The percentage of predicted drug–target interactions were
aggregated by brain region, to annotate which bioactivities of drugs against
protein targets lead to neurochemical component changes across brain regions.
Percentages were also aggregated on a neurochemical component basis, to
annotate the bioactivities of drugs against protein targets which lead to
neurochemical component changes. The resulting matrices were filtered for
display purposes for targets clustering to at least three brain regions or
neurochemical components, respectively, and subjected to by-clustering using
the Seaborn [https://github.com/mwaskom/seaborn/tree/v0.8.0] clustermap
function with method set to complete and metric set to Euclidean.

Mutual information analysis. Drugs were annotated with predicted protein tar-
gets from the binary matrix of in silico target predictions. Next, drugs were
annotated across the 38 available ATC codes with 1 for an annotation and 0 for no
ATC class available. Finally, drugs were annotated using the matrix of neuro-
chemical bit arrays across brain region and neurochemical components. The
resulting ATC and protein target matrices were subjected to pairwise mutual
information calculation against neurochemical bit arrays using the Scikit-learn
function sklearn.metrics.normalized_mutual_info_score54. Drugs with missing
neurochemical response patterns were removed per-pairwise comparison. This
calculation results in a value between 0 (no mutual information) and 1 (perfect
correlation). Scores were aggregated across ATC codes and targets and averaged to
calculate the overall mutual information. Scores were also aggregated and ranked
per-ATC code and per-predicted target to outline the top 5 informative features in
either spaces.

Reporting Summary. Further information on research design is available in
the Nature Research Reporting Summary linked to this article.

Data availability
All data are available from the open-access database syphad [www.syphad.org].
The data used in the analysis is available for download as supplementary data to
this manuscript and through Dryad repository55. A reporting summary is
provided.
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