134 research outputs found

    Production of dry type artificial seeds by means of PVC-FOIL desiccation method from genetically engineered somatic embryos of carrot (Daucus carota L., cv. Nantes Duke).

    Get PDF
    Under the experimental condition used, the pattern of desiccation was linear. The speed of water loss have been very slow, 4 mg/h and after 48 hours, an average 15% water content was measured

    Respiratory diphtheria in an asylum seeker from Afghanistan arriving to Finland via Sweden, December 2015

    Get PDF
    In December 2015, an asylum seeker originating from Afghanistan was diagnosed with respiratory diphtheria in Finland. He arrived in Finland from Sweden where he had already been clinically suspected and tested for diphtheria. Corynebacterium diphtheriae was confirmed in Sweden and shown to be genotypically and phenotypically toxigenic. The event highlights the importance of early case detection, rapid communication within the country and internationally as well as preparedness plans of diphtheria antitoxin availability.Peer reviewe

    Novel Anti-Neuroinflammatory Properties of a Thiosemicarbazone-Pyridylhydrazone Copper(II) Complex

    Get PDF
    Neuroinflammation has a major role in several brain disorders including Alzheimer’s disease (AD), yet at present there are no effective anti-neuroinflammatory therapeutics available. Copper(II) complexes of bis(thiosemicarbazones) (CuII(gtsm) and CuII(atsm)) have broad therapeutic actions in preclinical models of neurodegeneration, with CuII(atsm) demonstrating beneficial outcomes on neuroinflammatory markers in vitro and in vivo. These findings suggest that copper(II) complexes could be harnessed as a new approach to modulate immune function in neurodegenerative diseases. In this study, we examined the anti-neuroinflammatory action of several low-molecularweight, charge-neutral and lipophilic copper(II) complexes. Our analysis revealed that one compound, a thiosemicarbazone–pyridylhydrazone copper(II) complex (CuL5 ), delivered copper into cells in vitro and increased the concentration of copper in the brain in vivo. In a primary murine microglia culture, CuL5 was shown to decrease secretion of pro-inflammatory cytokine macrophage chemoattractant protein 1 (MCP-1) and expression of tumor necrosis factor alpha (Tnf), increase expression of metallothionein (Mt1), and modulate expression of Alzheimer’s disease-associated risk genes, Trem2 and Cd33. CuL5 also improved the phagocytic function of microglia in vitro. In 5xFAD model AD mice, treatment with CuL5 led to an improved performance in a spatial working memory test, while, interestingly, increased accumulation of amyloid plaques in treated mice. These findings demonstrate that CuL5 can induce anti-neuroinflammatory effects in vitro and provide selective benefit in vivo. The outcomes provide further support for the development of copper-based compounds to modulate neuroinflammation in brain diseases.Xin Yi Choo, Lachlan E. McInnes, Alexandra Grubman, Joanna M. Wasielewska, Irina Belaya, Emma Burrows, Hazel Quek, Jorge Cañas Martín, Sanna Loppi, Annika Sorvari, Dzhessi Rait, Andrew Powell, Clare Duncan, Jeffrey R. Liddell, Heikki Tanila, Jose M. Polo, Tarja Malm, Katja M. Kanninen, Paul S. Donnelly, and Anthony R. Whit

    Sources of variation in cuticular hydrocarbons in the ant formica exsecta

    Get PDF
    Phenotypic variation arises from interactions between genotype and environment, although how variation is produced and then maintained remains unclear. The discovery of the nest-mate recognition system in Formica exsecta ants has allowed phenotypic variation in chemical profiles to be quantified across a natural population of 83 colonies. We investigated if this variation was correlated or not with intrinsic (genetic relatedness), extrinsic (location, light, temperature) or social (queen number) factors. (Z)-9-Alkenes and n-alkanes showed different patterns of variance: island (location) explained only 0.2% of the variation in (Z)-9-alkenes, but 21¬–29% in n-alkanes, whereas colony of origin explained 96% and 45–49% of the variation in (Z)-9-alkenes and n-alkanes, respectively. By contrast, within-colony variance of (Z)-9-alkenes was 4%, and 23–34% in n-alkanes, supporting the function of the former as recognition cues. (Z)-9-Alkene and n-alkane profiles were correlated with the genetic distance between colonies. Only n-alkane profiles diverged with increasing spatial distance. Sampling year explained a small (5%), but significant, amount of the variation in the (Z)-9-alkenes, but there was no consistent directional trend. Polygynous colonies and populous monogynous colonies were dominated by a rich C23:1 profile. We found no associations between worker size, mound exposure, or humidity, although effect sizes for the latter two factors were considerable. The results support the conjecture that genetic factors are the most likely source of between-colony variation in cuticular hydrocarbons

    Biodiversity patterns of Arctic diatom assemblages in lakes and streams: Current reference conditions and historical context for biomonitoring

    Get PDF
    Comprehensive assessments of contemporary diatom distributions across the Arctic remain scarce. Furthermore, studies tracking species compositional differences across space and time, as well as diatom responses to climate warming, are mainly limited to paleolimnological studies due to a lack of routine monitoring in lakes and streams across vast areas of the Arctic. The study aims to provide a spatial assessment of contemporary species distributions across the circum-Arctic, establish contemporary biodiversity patterns of diatom assemblages to use as reference conditions for future biomonitoring assessments, and determine pre-industrial baseline conditions to provide historical context for modern diatom distributions. Diatom assemblages were assessed using information from ongoing regulatory monitoring programmes, individual research projects, and from surface sediment layers obtained from lake cores. Pre-industrial baseline conditions as well as the nature, direction and magnitude of changes in diatom assemblages over the pastc.200 years were determined by comparing surface sediment samples (i.e. containing modern assemblages) with a sediment interval deposited prior to the onset of significant anthropogenic activities (i.e. containing pre-1850 assemblages), together with an examination of diatoms preserved in contiguous samples from dated sediment cores. We identified several biotypes with distinct diatom assemblages using contemporary diatom data from both lakes and streams, including a biotype typical for High Arctic regions. Differences in diatom assemblage composition across circum-Arctic regions were gradual rather than abrupt. Species richness was lowest in High Arctic regions compared to Low Arctic and sub-Arctic regions, and higher in lakes than in streams. Dominant diatom taxa were not endemic to the Arctic. Species richness in both lakes and streams reached maximum values between 60 degrees N and 75 degrees N but was highly variable, probably reflecting differences in local and regional environmental factors and possibly sampling effort. We found clear taxon-specific differences between contemporary and pre-industrial samples that were often specific to both ecozone and lake depth. Regional patterns of species turnover (beta-diversity) in the pastc.200 years revealed that regions of the Canadian High Arctic and the Hudson Bay Lowlands to the south showed most compositional change, whereas the easternmost regions of the Canadian Arctic changed least. As shown in previous Arctic diatom studies, global warming has already affected these remote high latitude ecosystems. Our results provide reference conditions for future environmental monitoring programmes in the Arctic. Furthermore, diatom taxa identification and harmonisation require improvement, starting with circum-Arctic intercalibrations. Despite the challenges posed by the remoteness of the Arctic, our study shows the need for routine monitoring programmes that have a wide geographical coverage for both streams and lakes

    Climate-driven regime shifts in the biological communities of arctic lakes

    Get PDF
    Fifty-five paleolimnological records from lakes in the circumpolar Arctic reveal widespread species changes and ecological reorganizations in algae and invertebrate communities since approximately anno Domini 1850. The remoteness of these sites, coupled with the ecological characteristics of taxa involved, indicate that changes are primarily driven by climate warming through lengthening of the summer growing season and related limnological changes. The widespread distribution and similar character of these changes indicate that the opportunity to study arctic ecosystems unaffected by human influences may have disappeared. © 2005 by The National Academy of Sciences of the USA
    corecore