23 research outputs found

    Neurotransmitter Transporter-Like: A Male Germline-specific SLC6 Transporter Required for Drosophila Spermiogenesis

    Get PDF
    The SLC6 class of membrane transporters, known primarily as neurotransmitter transporters, is increasingly appreciated for its roles in nutritional uptake of amino acids and other developmentally specific functions. A Drosophila SLC6 gene, Neurotransmitter transporter-like (Ntl), is expressed only in the male germline. Mobilization of a transposon inserted near the 3β€² end of the Ntl coding region yields male-sterile mutants defining a single complementation group. Germline transformation with Ntl cDNAs under control of male germline-specific control elements restores Ntl/Ntl homozygotes to normal fertility, indicating that Ntl is required only in the germ cells. In mutant males, sperm morphogenesis appears normal, with elongated, individualized and coiled spermiogenic cysts accumulating at the base of the testes. However, no sperm are transferred to the seminal vesicle. The level of polyglycylation of Ntl mutant sperm tubulin appears to be significantly lower than that of wild type controls. Glycine transporters are the most closely related SLC6 transporters to Ntl, suggesting that Ntl functions as a glycine transporter in developing sperm, where augmentation of the cytosolic pool of glycine may be required for the polyglycylation of the massive amounts of tubulin in the fly's giant sperm. The male-sterile phenotype of Ntl mutants may provide a powerful genetic system for studying the function of an SLC6 transporter family in a model organism

    The Regulation of miRNA-211 Expression and Its Role in Melanoma Cell Invasiveness

    Get PDF
    The immediate molecular mechanisms behind invasive melanoma are poorly understood. Recent studies implicate microRNAs (miRNAs) as important agents in melanoma and other cancers. To investigate the role of miRNAs in melanoma, we subjected human melanoma cell lines to miRNA expression profiling, and report a range of variations in several miRNAs. Specifically, compared with expression levels in melanocytes, levels of miR-211 were consistently reduced in all eight non-pigmented melanoma cell lines we examined; they were also reduced in 21 out of 30 distinct melanoma samples from patients, classified as primary in situ, regional metastatic, distant metastatic, and nodal metastatic. The levels of several predicted target mRNAs of miR-211 were reduced in melanoma cell lines that ectopically expressed miR-211. In vivo target cleavage assays confirmed one such target mRNA encoded by KCNMA1. Mutating the miR-211 binding site seed sequences at the KCNMA1 3β€²-UTR abolished target cleavage. KCNMA1 mRNA and protein expression levels varied inversely with miR-211 levels. Two different melanoma cell lines ectopically expressing miR-211 exhibited significant growth inhibition and reduced invasiveness compared with the respective parental melanoma cell lines. An shRNA against KCNMA1 mRNA also demonstrated similar effects on melanoma cells. miR-211 is encoded within the sixth intron of TRPM1, a candidate suppressor of melanoma metastasis. The transcription factor MITF, important for melanocyte development and function, is needed for high TRPM1 expression. MITF is also needed for miR-211 expression, suggesting that the tumor-suppressor activities of MITF and/or TRPM1 may at least partially be due to miR-211's negative post transcriptional effects on the KCNMA1 transcript. Given previous reports of high KCNMA1 levels in metastasizing melanoma, prostate cancer and glioma, our findings that miR-211 is a direct posttranscriptional regulator of KCNMA1 expression as well as the dependence of this miRNA's expression on MITF activity, establishes miR-211 as an important regulatory agent in human melanoma

    Sodium butyrate induced keratinocyte apoptosis

    No full text
    Apoptosis of keratinocytes is a key mechanism required for epidermal homeostasis and the renewal of damaged cells. Its dysregulation has been implicated in many skin diseases including cancer and hyperproliferative disorders. In the present study, the effect of sodium butyrate, a histone deacetylase inhibitor, on keratinocyte apoptosis was investigated using the HaCaT human keratinocyte cell line. Sodium butyrate induced morphological changes associated with apoptosis and nuclear fragmentation of HaCaTs. Annexin V staining demonstrated that sodium butyrate induced apoptosis in a dose and time-dependent manner with 50% of HaCaTs apoptotic after exposure to 0.8 mg/ml sodium butyrate for 24 h. Apoptosis was associated with upregulation of cell surface expression of the death receptor Fas and activation of the extrinsic caspase pathway, with induction of caspase 8 activity peaking after 8 h. Caspase 3 activity peaked after 24 h and was associated with cleavage of the caspase 3 substrate, poly (ADP-ribose) polymerase (PARP). The intrinsic caspase pathway was not activated as caspase 9 activity was not detected, and there was no change in the expression of terminal differentiation markers keratin 10 and involucrin following sodium butyrate treatment. Together these results indicate that sodium butyrate is a potent inducer of Fas associated apoptosis via caspase activation in HaCaT keratinocytes, an effect that is independent of the induction of terminal differentiation
    corecore