367 research outputs found

    Transport and Magnetic Studies on the Spin State Transition of Pr1-xCaxCoO3 up to High Pressure

    Full text link
    Transport and magnetic measurements and structural and NMR studies have been carried out on (Pr1-yR'y)1-xAxCoO3 {R'=(rare earth elements and Y); A=(Ca, Ba and Sr)} at ambient pressure or under high pressure. The system exhibits a phase transition from a nearly metallic to an insulating state with decreasing temperature T, where the low spin (LS) state of Co3+ is suddenly stabilized. For y=0, we have constructed a T-x phase diagram at various values of the external pressure p. It shows that the (T, x) region of the low temperature phase, which is confined to a very narrow region around x=0.5 at ambient pressure, expands as p increases, suggesting that the transition is not due to an order-disorder type one. For the occurrence of the transition, both the Pr and Ca atoms seem to be necessary. The intimate relationship between the local structure around the Co ions and the electronic (or spin) state of Co3+ ions is discussed: For the smaller unit cell volume or the smaller volume of the CoO6 octahedra and for the larger tilting angle of the octahedra, the temperature of the transition becomes higher. The role of the carriers introduced by the doping of the A atoms, is also discussed. By analyzing the data of 59Co-NMR spectra and magnetic susceptibilities of Pr1-xCaxCoO3 the energy separations among the different spin states of Co3+ and Co4+ are roughly estimated.Comment: 15 pages, 15 figures, 2 tables, submitted to J. Phys. Soc. Jp

    SPring-8 BL36XU: Catalytic Reaction Dynamics for Fuel Cells

    Get PDF
    A tapered undulator beamline BL36XU was constructed at SPring-8 to conduct structural and electronic analysis of dynamic events on polymer electrolyte fuel cell (PEFC) cathode catalysts for the development of next-generation PEFCs. BL36XU provides various time and spatially resolved XAFS techniques in an energy range from 4.5 to 35 keV for investigating PEFCs under the operating conditions. In addition, we developed in-situ complementary measurement systems, such as in-situ time-resolved XAFS/XRD and ambient pressure HAXPES systems. This report describes the performance and present status of the BL36XU

    Cryo-EM structure of lysenin pore elucidates membrane insertion by an aerolysin family protein

    Get PDF
    Lysenin from the coelomic fluid of the earthworm Eisenia fetida belongs to the aerolysin family of small β-pore-forming toxins (β-PFTs), some members of which are pathogenic to humans and animals. Despite efforts, a high-resolution structure of a channel for this family of proteins has been elusive and therefore the mechanism of activation and membrane insertion remains unclear. Here we determine the pore structure of lysenin by single particle cryo-EM, to 3.1 Å resolution. The nonameric assembly reveals a long β-barrel channel spanning the length of the complex that, unexpectedly, includes the two pre-insertion strands flanking the hypothetical membrane-insertion loop. Examination of other members of the aerolysin family reveals high structural preservation in this region, indicating that the membrane-insertion pathway in this family is conserved. For some toxins, proteolytic activation and pro-peptide removal will facilitate unfolding of the pre-insertion strands, allowing them to form the β-barrel of the channel

    In vivo and ex vivo percutaneous absorption of [14C]-bisphenol A in rats: a possible extrapolation to human absorption?

    Get PDF
    Bisphenol A (BPA) is a monomer used mainly in the synthesis of polycarbonates and epoxy resins. Percutaneous absorption is the second source of exposure, after inhalation, in the work environment. However, studies on this route of absorption are lacking or incomplete. In this study, percutaneous BPA absorption was measured in vivo and ex vivo in the rat, and ex vivo in humans. An approximately 12-fold difference in permeability between rat skin and human skin was found, with permeability being higher in the rat. In addition, inter- and intra-individual variability of up to tenfold was observed in humans. No accumulation of BPA in the skin was found during exposure. The skin clearance rate following exposure was estimated at 0.4 μg/cm²/h. Ex vivo and in vivo percutaneous absorption fluxes of BPA in the rat were in the same range (about 2.0 μg/cm²/h), suggesting that extrapolation to the in vivo situation in humans may be possible. The European tolerable daily intake (TDI) of BPA is 50 μg/kg body weight. However, many research projects have highlighted the significant effects of BPA in rodents at doses lower than 10 μg/kg/day. A 1-h occupational exposure over 2,000 cm² (forearms and hands) may lead to a BPA absorption of 4 μg/kg/day. This is 8% of the European TDI and is very close to the value at which effects have been observed in animals. This absorption must therefore be taken into account when evaluating risks of BPA exposure, at least until more relevant results on the toxicity of BPA in humans are available

    Nasal Chemosensory-Stimulation Evoked Activity Patterns in the Rat Trigeminal Ganglion Visualized by In Vivo Voltage-Sensitive Dye Imaging

    Get PDF
    Mammalian nasal chemosensation is predominantly mediated by two independent neuronal pathways, the olfactory and the trigeminal system. Within the early olfactory system, spatiotemporal responses of the olfactory bulb to various odorants have been mapped in great detail. In contrast, far less is known about the representation of volatile chemical stimuli at an early stage in the trigeminal system, the trigeminal ganglion (TG), which contains neurons directly projecting to the nasal cavity. We have established an in vivo preparation that allows high-resolution imaging of neuronal population activity from a large region of the rat TG using voltage-sensitive dyes (VSDs). Application of different chemical stimuli to the nasal cavity elicited distinct, stimulus-category specific, spatiotemporal activation patterns that comprised activated as well as suppressed areas. Thus, our results provide the first direct insights into the spatial representation of nasal chemosensory information within the trigeminal ganglion imaged at high temporal resolution

    Efficient CO2-Reducing Activity of NAD-Dependent Formate Dehydrogenase from Thiobacillus sp KNK65MA for Formate Production from CO2 Gas

    Get PDF
    NAD-dependent formate dehydrogenase (FDH) from Candida boidinii (CbFDH) has been widely used in various CO2 reduction systems but its practical applications are often impeded due to low CO2-reducing activity. In this study, we demonstrated superior CO2-reducing properties of FDH from Thiobacillus sp. KNK65MA (TsFDH) for production of formate from CO2 gas. To discover more efficient CO2-reducing FDHs than a reference enzyme e. CbFDH, five FDHs were selected with biochemical properties and then, their CO2-reducing activities were evaluated. All FDHs including CbFDH showed better CO2-reducing activities at acidic pHs than at neutral pHs and four FDHs were more active than CbFDH in the CO2 reduction reaction. In particular, the FDH from Thiobacillus sp. KNK65IVIA (TsFDH) exhibited the highest CO2-reducing activity and had a dramatic preference for the reduction reaction, i.e., a 84.2-fold higher ratio of CO2 reduction to formate oxidation in catalytic efficiency (k(cat)/K-B) compared to CbFDH. Formate was produced from CO2 gas using TsFDH and CbFDH, and TsFDH showed a 5.8-fold higher formate production rate than CbFDH. A sequence and structural comparison showed that FDHs with relatively high CO2-reducing activities had elongated N- and C-terminal loops. The experimental results demonstrate that TsFDH can be an alternative to CbFDH as a biocatalyst in CO2 reduction systemsope

    Active removal of waste dye pollutants using Ta[sub]3N[sub]5/W[sub]18O[sub]49 nanocomposite fibres

    Get PDF
    A scalable solvothermal technique is reported for the synthesis of a photocatalytic composite material consisting of orthorhombic Ta3N5 nanoparticles and WOx≤3 nanowires. Through X-ray diffraction and X-ray photoelectron spectroscopy, the as-grown tungsten(VI) sub-oxide was identified as monoclinic W18O49. The composite material catalysed the degradation of Rhodamine B at over double the rate of the Ta3N5 nanoparticles alone under illumination by white light, and continued to exhibit superior catalytic properties following recycling of the catalysts. Moreover, strong molecular adsorption of the dye to the W18O49 component of the composite resulted in near-complete decolourisation of the solution prior to light exposure. The radical species involved within the photocatalytic mechanisms were also explored through use of scavenger reagents. Our research demonstrates the exciting potential of this novel photocatalyst for the degradation of organic contaminants, and to the authors’ knowledge the material has not been investigated previously. In addition, the simplicity of the synthesis process indicates that the material is a viable candidate for the scale-up and removal of dye pollutants on a wider scale

    A comparison of in vitro properties of resting SOD1 transgenic microglia reveals evidence of reduced neuroprotective function

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Overexpression of mutant copper/zinc superoxide dismutase (<it>SOD1</it>) in rodents has provided useful models for studying the pathogenesis of amyotrophic lateral sclerosis (ALS). Microglia have been shown to contribute to ALS disease progression in these models, although the mechanism of this contribution remains to be elucidated. Here, we present the first evidence of the effects of overexpression of mutant (TG G93A) and wild type (TG WT) human <it>SOD1 </it>transgenes on a set of functional properties of microglia relevant to ALS progression, including expression of integrin β-1, spreading and migration, phagocytosis of apoptotic neuronal cell debris, and intracellular calcium changes in response to an inflammatory stimulus.</p> <p>Results</p> <p>TG SOD1 G93A but not TG SOD1 WT microglia had lower expression levels of the cell adhesion molecule subunit integrin β-1 than their NTG control cells [NTG (G93A) and NTG (WT), respectively, 92.8 ± 2.8% on TG G93A, 92.0 ± 6.6% on TG WT, 100.0 ± 1.6% on NTG (G93A), and 100.0 ± 2.7% on NTG (WT) cells], resulting in decreased spreading ability, with no effect on ability to migrate. Both TG G93A and TG WT microglia had reduced capacity to phagocytose apoptotic neuronal cell debris (13.0 ± 1.3% for TG G93A, 16.5 ± 1.9% for TG WT, 28.6 ± 1.8% for NTG (G93A), and 26.9 ± 2.8% for NTG (WT) cells). Extracellular stimulation of microglia with ATP resulted in smaller increase in intracellular free calcium in TG G93A and TG WT microglia relative to NTG controls (0.28 ± 0.02 μM for TG G93A, 0.24 ± 0.03 μM for TG WT, 0.39 ± 0.03 μM for NTG (G93A), and 0.37 ± 0.05 μM for NTG (WT) microglia).</p> <p>Conclusions</p> <p>These findings indicate that, under resting conditions, microglia from mutant <it>SOD1 </it>transgenic mice have a reduced capacity to elicit physiological responses following tissue disturbances and that higher levels of stimulatory signals, and/or prolonged stimulation may be necessary to initiate these responses. Overall, resting mutant <it>SOD1</it>-overexpressing microglia may have reduced capacity to function as sensors of disturbed tissue/cellular homeostasis in the CNS and thus have reduced neuroprotective function.</p
    corecore