5,107 research outputs found

    Coup Agency and Prospects for Democracy

    Get PDF
    This research note introduces new global data on military coups. Conventional aggregate data so far have conflated two distinct types of coups. Military interventions by leading officers are coups "from above,"characterized by political power struggles within authoritarian elite coalitions where officers move against civilian elites, executive incumbents, and their loyal security personnel. By contrast, power grabs by officers from the lower and middle ranks are coups "from below,"where military personnel outside of the political elite challenge sitting incumbents, their loyalists, and the regime itself. Disaggregating coup types offers leverage to revise important questions about the causes and consequences of military intervention in politics. This research note illustrates that coup attempts from the top of the military hierarchy are much more likely to be successful than coups from the lower and middle ranks of the military hierarchy. Moreover, coups from the top recalibrate authoritarian elite coalitions and serve to sustain autocratic rule; they rarely produce an opening for a democratic transition. Successful coups from below, by contrast, can result in the breakdown of authoritarian regimes and generate an opening for democratic transitions

    Geometrical Expression for the Angular Resolution of a Network of Gravitational-Wave Detectors

    Get PDF
    We report for the first time general geometrical expressions for the angular resolution of an arbitrary network of interferometric gravitational-wave (GW) detectors when the arrival-time of a GW is unknown. We show explicitly elements that decide the angular resolution of a GW detector network. In particular, we show the dependence of the angular resolution on areas formed by projections of pairs of detectors and how they are weighted by sensitivities of individual detectors. Numerical simulations are used to demonstrate the capabilities of the current GW detector network. We confirm that the angular resolution is poor along the plane formed by current LIGO-Virgo detectors. A factor of a few to more than ten fold improvement of the angular resolution can be achieved if the proposed new GW detectors LCGT or AIGO are added to the network. We also discuss the implications of our results for the design of a GW detector network, optimal localization methods for a given network, and electromagnetic follow-up observations.Comment: 13 pages, for Phys. Rev.

    Removing non-stationary, non-harmonic external interference from gravitational wave interferometer data

    Get PDF
    We describe a procedure to identify and remove a class of non-stationary and non-harmonic interference lines from gravitational wave interferometer data. These lines appear to be associated with the external electricity main supply, but their amplitudes are non-stationary and they do not appear at harmonics of the fundamental supply frequency. We find an empirical model able to represent coherently all the non-harmonic lines we have found in the power spectrum, in terms of an assumed reference signal of the primary supply input signal. If this signal is not available then it can be reconstructed from the same data by making use of the coherent line removal algorithm that we have described elsewhere. All these lines are broadened by frequency changes of the supply signal, and they corrupt significant frequency ranges of the power spectrum. The physical process that generates this interference is so far unknown, but it is highly non-linear and non-stationary. Using our model, we cancel the interference in the time domain by an adaptive procedure that should work regardless of the source of the primary interference. We have applied the method to laser interferometer data from the Glasgow prototype detector, where all the features we describe in this paper were observed. The algorithm has been tuned in such a way that the entire series of wide lines corresponding to the electrical interference are removed, leaving the spectrum clean enough to detect signals previously masked by them. Single-line signals buried in the interference can be recovered with at least 75 % of their original signal amplitude.Comment: 14 pages, 5 figures, Revtex, psfi

    Time-Optimal Adiabatic-Like Expansion of Bose-Einstein Condensates

    Full text link
    In this paper we study the fast adiabatic-like expansion of a one-dimensional Bose-Einstein condensate (BEC) confined in a harmonic potential, using the theory of time-optimal control. We find that under reasonable assumptions suggested by the experimental setup, the minimum-time expansion occurs when the frequency of the potential changes in a bang-bang form between the permitted values. We calculate the necessary expansion time and show that it scales logarithmically with large values of the expansion factor. This work is expected to find applications in areas where the efficient manipulations of BEC is of utmost importance. As an example we present the field of atom interferometry with BEC, where the wavelike properties of atoms are used to perform interference experiments that measure with unprecedented precision small shifts induced by phenomena like rotation, acceleration, and gravity gradients.Comment: Submitted to 51st IEEE Conference on Decision and Contro

    Results of the First Coincident Observations by Two Laser-Interferometric Gravitational Wave Detectors

    Get PDF
    We report an upper bound on the strain amplitude of gravitational wave bursts in a waveband from around 800Hz to 1.25kHz. In an effective coincident observing period of 62 hours, the prototype laser interferometric gravitational wave detectors of the University of Glasgow and Max Planck Institute for Quantum Optics, have set a limit of 4.9E-16, averaging over wave polarizations and incident directions. This is roughly a factor of 2 worse than the theoretical best limit that the detectors could have set, the excess being due to unmodelled non-Gaussian noise. The experiment has demonstrated the viability of the kind of observations planned for the large-scale interferometers that should be on-line in a few years time.Comment: 11 pages, 2 postscript figure

    Derivation of the Planck Spectrum for Relativistic Classical Scalar Radiation from Thermal Equilibrium in an Accelerating Frame

    Full text link
    The Planck spectrum of thermal scalar radiation is derived suggestively within classical physics by the use of an accelerating coordinate frame. The derivation has an analogue in Boltzmann's derivation of the Maxwell velocity distribution for thermal particle velocities by considering the thermal equilibrium of noninteracting particles in a uniform gravitational field. For the case of radiation, the gravitational field is provided by the acceleration of a Rindler frame through Minkowski spacetime. Classical zero-point radiation and relativistic physics enter in an essential way in the derivation which is based upon the behavior of free radiation fields and the assumption that the field correlation functions contain but a single correlation time in thermal equilibrium. The work has connections with the thermal effects of acceleration found in relativistic quantum field theory.Comment: 23 page

    Thermal Bremsstrahlung photons probing the nuclear caloric curve

    Get PDF
    Hard-photon (EÎł>_{\gamma}> 30 MeV) emission from second-chance nucleon-nucleon Bremsstrahlung collisions in intermediate energy heavy-ion reactions is studied employing a realistic thermal model. Photon spectra and yields measured in several nucleus-nucleus reactions are consistent with an emission from hot nuclear systems with temperatures T≈T\approx 4 - 7 MeV. The corresponding caloric curve in the region of excitation energies ϔ⋆≈\epsilon^\star\approx 3{\it A} - 8{\it A} MeV shows lower values of TT than those expected for a Fermi fluid.Comment: 13 pages, 3 figures. To appear in Physics Letters
    • 

    corecore