2,589 research outputs found

    Thermoelastic study of nanolayered structures using time-resolved x-ray diffraction at high repetition rate

    Full text link
    We investigate the thermoelastic response of a nanolayered sample composed of a metallic SrRuO3 (SRO) electrode sandwiched between a ferroelectric Pb(Zr0.2Ti0.8)O3 (PZT) film with negative thermal expansion and a SrTiO3 substrate. SRO is rapidly heated by fs-laser pulses with 208 kHz repetition rate. Diffraction of x-ray pulses derived from a synchrotron measures the transient out-of-plane lattice constant c of all three materials simultaneously from 120 ps to 5 mus with a relative accuracy up to Delta c/c = 10^-6. The in-plane propagation of sound is essential for understanding the delayed out of plane expansion.Comment: 5 pages, 3 figure

    Postcard: Sterling Lodge, No. 171, A.F. & A.M.

    Get PDF
    This black and white printed postcard is an invitation to attend the Grand Lodge meeting. There is an image of a ruler and compass with a capital G in the center. This emblem is surrounded by leaves and lines emanating from the image. The rest of the card is filled with typed text. There is handwriting indicating the time of the meeting.https://scholars.fhsu.edu/tj_postcards/1085/thumbnail.jp

    Katatones Dilemma unter Kombinationsbehandlung mit Lithium und Risperidon

    Full text link
    OBJECTIVE: The case of a schizoaffective patient suffering from a malignant catatonic syndrome following combined lithium-risperidone therapy is explored. METHOD: A case report and relevant deliberations regarding pathophysiology of the catatonic dilemma are discussed. CONCLUSIONS: There are two critical transitions in the development of a malignant catatonic syndrome. Dopaminergic system and psychopharmacological factors are supposed to play a key role. However, other neurotransmitter systems and the individual predisposition must be considered

    Proof of Bose-Einstein Condensation for Dilute Trapped Gases

    Full text link
    The ground state of bosonic atoms in a trap has been shown experimentally to display Bose-Einstein condensation (BEC). We prove this fact theoretically for bosons with two-body repulsive interaction potentials in the dilute limit, starting from the basic Schroedinger equation; the condensation is 100% into the state that minimizes the Gross-Pitaevskii energy functional. This is the first rigorous proof of BEC in a physically realistic, continuum model.Comment: Revised version with some simplifications and clarifications. To appear in Phys. Rev. Let

    Energy and Structure of Hard-Sphere Bose Gases in three and two dimensions

    Full text link
    The energy and structure of dilute gases of hard spheres in three dimensions is discussed, together with some aspects of the corresponding 2D systems. A variational approach in the framework of the Hypernetted Chain Equations (HNC) is used starting from a Jastrow wavefunction that is optimized to produce the best two--body correlation factor with the appropriate long range. Relevant quantities describing static properties of the system are studied as a function of the gas parameter x=ρadx=\rho a^d where ρ\rho, aa and dd are the density, ss--wave scattering length of the potential and dimensionality of the space, respectively. The occurrence of a maximum in the radial distribution function and in the momentum distribution is a natural effect of the correlations when xx increases. Some aspects of the asymptotic behavior of the functions characterizing the structure of the systems are also investigated.Comment: Proceedings of the QFS2004 conference in Trento. To appear in JLT

    Localized excited charge carriers generate ultrafast inhomogeneous strain in the multiferroic BiFeO3_3

    Full text link
    We apply ultrafast X-ray diffraction with femtosecond temporal resolution to monitor the lattice dynamics in a thin film of multiferroic BiFeO3_3 after above-bandgap photoexcitation. The sound-velocity limited evolution of the observed lattice strains indicates a quasi-instantaneous photoinduced stress which decays on a nanosecond time scale. This stress exhibits an inhomogeneous spatial profile evidenced by the broadening of the Bragg peak. These new data require substantial modification of existing models of photogenerated stresses in BiFeO3_3: the relevant excited charge carriers must remain localized to be consistent with the data

    Internal Energy of the Potts model on the Triangular Lattice with Two- and Three-body Interactions

    Full text link
    We calculate the internal energy of the Potts model on the triangular lattice with two- and three-body interactions at the transition point satisfying certain conditions for coupling constants. The method is a duality transformation. Therefore we have to make assumptions on uniqueness of the transition point and that the transition is of second order. These assumptions have been verified to hold by numerical simulations for q=2, 3 and 4, and our results for the internal energy are expected to be exact in these cases.Comment: 9 pages, 4 figure

    Segmental relaxation in semicrystalline polymers: a mean field model for the distribution of relaxation times in confined regimes

    Get PDF
    The effect of confinement in the segmental relaxation of polymers is considered. On the basis of a thermodynamic model we discuss the emerging relevance of the fast degrees of freedom in stimulating the much slower segmental relaxation, as an effect of the constraints at the walls of the amorphous regions. In the case that confinement is due to the presence of crystalline domains, a quasi-poissonian distribution of local constraining conditions is derived as a result of thermodynamic equilibrium. This implies that the average free energy barrier ΔF\Delta F for conformational rearrangement is of the same order of the dispersion of the barrier heights, δ(ΔF)\delta (\Delta F), around ΔF\Delta F. As an example, we apply the results to the analysis of the α\alpha-relaxation as observed by dielectric broad band spectroscopy in semicrystalline poly(ethylene terephthalate) cold-crystallized from either an isotropic or an oriented glass. It is found that in the latter case the regions of cooperative rearrangement are significantly larger than in the former.Comment: 10 pages, 4 figures .ep

    What do emulsification failure and Bose-Einstein condensation have in common?

    Full text link
    Ideal bosons and classical ring polymers formed via self-assembly, are known to have the same partition function, and so analogous phase transitions. In ring polymers, the analogue of Bose-Einstein condensation occurs when a ring polymer of macroscopic size appears. We show that a transition of the same general form occurs within a whole class of systems with self-assembly, and illustrate it with the emulsification failure of a microemulsion phase of water, oil and surfactant. As with Bose-Einstein condensation, the transition occurs even in the absence of interactions.Comment: 7 pages, 1 figure, typeset with EUROTeX, uses epsfi

    Hodge Theory on Metric Spaces

    Get PDF
    Hodge theory is a beautiful synthesis of geometry, topology, and analysis, which has been developed in the setting of Riemannian manifolds. On the other hand, spaces of images, which are important in the mathematical foundations of vision and pattern recognition, do not fit this framework. This motivates us to develop a version of Hodge theory on metric spaces with a probability measure. We believe that this constitutes a step towards understanding the geometry of vision. The appendix by Anthony Baker provides a separable, compact metric space with infinite dimensional \alpha-scale homology.Comment: appendix by Anthony W. Baker, 48 pages, AMS-LaTeX. v2: final version, to appear in Foundations of Computational Mathematics. Minor changes and addition
    corecore