662 research outputs found

    Separation of random telegraph signals from 1/f noise in MOSFETs under constant and switched bias conditions

    Get PDF
    The low-frequency noise power spectrum of small dimension MOSFETs is dominated by Lorentzians arising from random telegraph signals (RTS). The low-frequency noise is observed to decrease when the devices are periodically switched 'off'. The technique of determining the statistical lifetimes and amplitudes of the RTS by fitting the signal level histogram of the time-domain record to two-Gaussian histograms has been reported in the literature. This procedure is then used for analysing the 'noisy' RTS along with the device background noise, which turned out to be 1/f noise. The 1/f noise of the device can then be separated from the RTS using this procedure. In this work, RTS observed in MOSFETs, under both constant and switched biased conditions, have been investigated in the time domain, Further, the 1/f noise in both the constant and the switched biased conditions is investigated

    High-Performance Deep SubMicron CMOS Technologies with Polycrystalline-SiGe Gates

    Get PDF
    The use of polycrystalline SiGe as the gate material for deep submicron CMOS has been investigated. A complete compatibility to standard CMOS processing is demonstrated when polycrystalline Si is substituted with SiGe (for Ge fractions below 0.5) to form the gate electrode of the transistors. Performance improvements are achieved for PMOS transistors by careful optimization of both transistor channel profile and p-type gate workfunction, the latter by changing Ge mole fraction in the gate. For the 0.18 Âżm CMOS generation we record up to 20% increase in the current drive, a 10% increase in the channel transconductance and subthreshold swing improvement from 82 mV/dec to 75 mV/dec resulting in excellent ÂżonÂż/ÂżoffÂż currents ratio. At the same time, NMOS transistor performance is not affected by gate material substitutio

    Nutrient loss pathways from grazed grasslands and the effects of decreasing inputs: experimental results for three soil types

    Get PDF
    Agriculture is a main contributor of diffuse emissions of N and P to the environment. For N the main loss pathways are NH3-volatilization, leaching to ground and surface water and N-2(O) emissions. Currently, imposing restraints on farm inputs are used as policy tool to decrease N and P leaching to ground water and to surface water, and the same measure is suggested to combat emissions of N2O. The response, however, to these measures largely depends on the soil type. In this study nutrient flows of three dairy farms in The Netherlands with comparable intensity on sand, peat and clay soils were monitored for at least 2 years. The first aim was to provide quantitative data on current nutrient loss pathways. The second aim was to explore the responses in partitioning of the nutrient loss pathways when farm inputs were altered. Mean denitrification rates ranged from 103 kg N ha(-1) year(-1) for the sandy soil to 170 kg N ha(-1) year(-1) for the peat soil and leaching to surface water was about 73 kg N ha(-1) year(-1) for the sandy soil, 15 kg N ha(-1) year(-1) for the clay soil and 38 kg N ha(-1) year(-1) for the peat soil. For P, leaching to surface water ranged from 2 kg P ha(-1) year(-1) for the sandy site to 5 kg P ha(-1) year(-1) for the peat site. The sandy soil was most responsive to changes in N surpluses on leaching to surface water, followed by the peat soil and least responsive was the clay soil. For P, a similar sequence was found. This article demonstrates that similar reductions of N and P inputs result in different responses in N and P loss pathways for different soil types. These differences should be taken into account when evaluating measures to improve environmental performance of (dairy) farm

    Modeling of RTS noise in MOSFETs under steady-state and large-signal excitation

    Get PDF
    The behavior of RTS noise in MOSFETs under large-signal excitation is experimentally studied. Our measurements show a significant transient effect, in line with earlier reports. We present a new physical model to describe this transient behavior and to predict RTS noise in MOSFETs under large-signal excitation. With only three model parameters the behavior is well described, contrary to existing models

    Axial jerks: a clinical spectrum ranging from propriospinal to psychogenic myoclonus

    Get PDF
    Propriospinal myoclonus (PSM) is a rare disorder with repetitive flexor, arrhythmic jerks of the trunk, hips and knees. Its generation is presumed to relay in the spinal cord. We report a case series of 35 consecutive patients with jerks of the trunk referred as possible PSM to a tertiary referral center for movement disorders. We review classical PSM features as well as psychogenic and tic characteristics. In our case series, secondary PSM was diagnosed in one patient only. 34 patients showed features suggestive of a psychogenic origin of axial jerks. Diagnosis of psychogenic axial jerks was based on clinical clues without additional investigations (n = 8), inconsistent findings at polymyography (n = 15), regular eye blinking preceding jerks (n = 2), or the presence of a Bereitschaftspotential (BP) (n = 9). In addition, several tic characteristics were noted. Almost all patients referred with possible PSM in our tertiary referral clinic had characteristics suggesting a psychogenic origin even in the presence of a classic polymyography pattern or in the absence of a BP. Clinical overlap with adult-onset tics seems to exist

    Characterization of positive air ions in boreal forest air at the Hyytiälä SMEAR station

    No full text
    International audienceThe behavior of the concentration of positive small (or cluster) air ions and naturally charged nanometer aerosol particles (aerosol ions) has been studied on the basis of measurements carried out in a boreal forest at the Hyytiälä SMEAR station, Finland, during the BIOFOR III campaign in spring 1999. Statistical characteristics of the concentrations of cluster ions, two classes of aerosol ions of the sizes of 2.5?8 nm and 8?ca. 20 nm and the quantities that determine the balance of small ions in the atmosphere have been given for the nucleation event days and non-event days. The dependence of small ion concentration on the ion loss (sink) due to aerosol particles was investigated applying a model of bipolar diffusion charging of particles by small ions. The small ion concentration and the ion sink were closely correlated (correlation coefficient ?87%) when the fog events and the hours of high relative humidity (above 95%), as well as nocturnal calms and weak wind (wind speed ?1) had been excluded. However, an extra ion loss term presumably due to small ion deposition on coniferous forest with a magnitude equal to the average ion loss to pre-existing particles is needed to explain the observations. Also the hygroscopic growth correction of measured aerosol particle size distributions was found to be necessary for proper estimation of the ion sink. In the case of nucleation burst events, variations in the concentration of small positive ions were in accordance with the changes caused by the ion sink due to aerosols; no clear indication of positive ion depletion by ion-induced nucleation was found. The estimated average ionization rate of the air at the Hyytiälä station in early spring, when the ground was partly covered with snow, was about 6 ion pairs cm?3 s?1. The study of the charging state of nanometer aerosol particles (2.5?8 nm) revealed a strong correlation (correlation coefficient 88%) between the concentrations of particles and positively charged particles (positive air ions) during nucleation bursts. The estimated charged fraction of particles, which varied from 3% to 6% considering various nucleation event days, confirms that these particles are almost quasi-steady state charged. Also the particles and air ions in the size range of 8?ca. 20 nm showed a good qualitative consistency; the correlation coefficient was 92%
    • …
    corecore