1,000 research outputs found

    Limiting shapes of confined lipid vesicles

    Get PDF
    We theoretically study the shapes of lipid vesicles confined to a spherical cavity, elaborating a framework based on the so-called limiting shapes constructed from geometrically simple structural elements such as double-membrane walls and edges. Partly inspired by numerical results, the proposed non-compartmentalized and compartmentalized limiting shapes are arranged in the bilayer-couple phase diagram which is then compared to its free-vesicle counterpart. We also compute the area-difference-elasticity phase diagram of the limiting shapes and we use it to interpret shape transitions experimentally observed in vesicles confined within another vesicle. The limiting-shape framework may be generalized to theoretically investigate the structure of certain cell organelles such as the mitochondrion

    Arthroscopic management of temporomandibular closed lock

    Get PDF
    The document attached has been archived with permission from the Australian Dental Association. An external link to the publisher’s copy is included

    Gamma-Ray Burst Polarimeter - GAP - aboard the Small Solar Power Sail Demonstrator IKAROS

    Full text link
    The small solar power sail demonstrator "IKAROS" is a Japanese engineering verification spacecraft launched by H-IIA rocket on May 21, 2010 at JAXA Tanegashima Space Center. IKAROS has a huge sail with 20 m in diameter which is made of thin polyimide membrane. This sail converts the solar radiation-pressure into the propulsion force of IKAROS and accelerates the spacecraft. The Gamma-Ray Burst Polarimeter (GAP) aboard IKAROS is the first polarimeter to observe the gamma-ray polarization of Gamma-Ray Bursts (GRBs) during the IKAROS cruising phase. GAP is a tinny detector of 3.8 kg in weight and 17 cm in size with an energy range between 50-300 keV. The GAP detector also plays a role of the interplanetary network (IPN) to determine the GRB direction. The detection principle of gamma-ray polarization is the anisotropy of the Compton scattering. GAP works as the GRB polarimeter with the full coincidence mode between the central plastic and the surrounding CsI detectors. GAP is the first instrument, devoted for the observation of gamma-ray polarization in the astronomical history. In this paper, we present the GAP detector and its ground and onboard calibrations.Comment: Submitted to Publications of the Astronomical Society of Japan (PASJ), 23 pages, 14 figure

    Structure and magnetism in carbon nanotubes including magnetic wire

    Get PDF
    金沢大学大学院自然科学研究科計算科学金沢大学理学部We have studied the electronic structure of the carbon nanotubes which include Fe atomic wire with using the density functional theory. As the stable geometries, we obtained the straight and zigzag wires, which have ferromagnetic and antiferromagnetic alignments, respectively. The antiferromagnets consists of the two ferromagnetic dimers which couple in antiparallel alignment. We presents the band dispersions and the density of states for the magnetic nanotubes. The electronic structure at the Fermi level consists of the Fe 3d and C 2pπ states, which shows a strong hybridization between them. © EDP Sciences/Società Italiana di Fisica/Springer-Verlag 2007

    Bipolar-Hyper-Shell Galactic Center Statrburst Model: Further Evidence from ROSAT Data and New Radio and X-ray Simulations

    Get PDF
    Using the all-sky ROSAT soft X-ray and 408-MHz radio continuum data, we show that the North Polar Spur and its western and southern counter-spurs draw a giant dumbbell-shape necked at the galactic plane. We interpret these features as due to a shock front originating from a starburst 15 million years ago with a total energy of the order of 1056\sim 10^{56} ergs or 10510^5 type II supernovae. We simulate all-sky distributions of radio continuum and soft X-ray intensities based on the bipolar-hyper-shell galactic center starburst model. The simulations can well reproduce the radio NPS and related spurs, as well as radio spurs in the tangential directions of spiral arms. Simulated X-ray maps in 0.25, 0.75 and 1.5 keV bands reproduce the ROSAT X-ray NPS, its western and southern counter-spurs, and the absorption layer along the galactic plane. We propose to use the ROSAT all-sky maps to probe the physics of gas in the halo-intergalactic interface, and to directly date and measure the energy of a recent Galactic Center starburst.Comment: To appear in ApJ, Latex MS in ApJ macro, 8 figures in jpg (original quality ps figs available on request

    Design and performance of the muon monitor for the T2K neutrino oscillation experiment

    Full text link
    This article describes the design and performance of the muon monitor for the T2K (Tokaito-Kamioka) long baseline neutrino oscillation experiment. The muon monitor consists of two types of detector arrays: ionization chambers and silicon PIN photodiodes. It measures the intensity and profile of muons produced, along with neutrinos, in the decay of pions. The measurement is sensitive to the intensity and direction of the neutrino beam. The linearity and stability of the detectors were measured in beam tests to be within 2.4% and 1.5%, respectively. Based on the test results, the precision of the beam direction measured by the muon monitor is expected to be 0.25 mrad.Comment: 22 page

    Development and operational experience of magnetic horn system for T2K experiment

    Get PDF
    A magnetic horn system to be operated at a pulsed current of 320 kA and to survive high-power proton beam operation at 750 kW was developed for the T2K experiment. The first set of T2K magnetic horns was operated for over 12 million pulses during the four years of operation from 2010 to 2013, under a maximum beam power of 230 kW, and 6.63×10206.63\times10^{20} protons were exposed to the production target. No significant damage was observed throughout this period. This successful operation of the T2K magnetic horns led to the discovery of the νμνe\nu_{\mu}\rightarrow\nu_e oscillation phenomenon in 2013 by the T2K experiment. In this paper, details of the design, construction, and operation experience of the T2K magnetic horns are described.Comment: 22 pages, 40 figures, also submitted to Nuclear Instrument and Methods in Physics Research,

    Search for the decay KL03γK_L^0 \rightarrow 3\gamma

    Full text link
    We performed a search for the decay KL03γK_L^0 \rightarrow 3\gamma with the E391a detector at KEK. In the data accumulated in 2005, no event was observed in the signal region. Based on the assumption of KL03γK_L^0 \rightarrow 3\gamma proceeding via parity-violation, we obtained the single event sensitivity to be (3.23±0.14)×108(3.23\pm0.14)\times10^{-8}, and set an upper limit on the branching ratio to be 7.4×1087.4\times10^{-8} at the 90% confidence level. This is a factor of 3.2 improvement compared to the previous results. The results of KL03γK_L^0 \rightarrow 3\gamma proceeding via parity-conservation were also presented in this paper
    corecore