39 research outputs found
Status and prospects of discovery of 0νββ decay with the CUORE detector
In this contribution we present the achievements of the CUORE
experiment so far. It is the first tonne-scale bolometric detector and it is in stable
data taking since 2018. We reached to collect about 1800 kg×yr of exposure of
which more than 1ton×year have been analysed. The CUORE detector is meant
to search for the neutrinoless double β decay (0νββ) of the 130Te isotope. This is
a beyond Standard Model process which could establish the nature of the neutrino
to be Dirac or a Majorana particle. It is an alternative mode of the two-neutrinos
double β decay, a rare decay which have been precisely measured by CUORE in
the 130Te. We found no evidence of the 0νββ and we set a Bayesian lower limit
of 2.2×1025yr on its half-life. The expertise achieved by CUORE set a milestone
for any future bolometric detector, including CUPID, which is the planned next
generation experiment searching for 0νββ with scintillating bolometers
A first test of CUPID prototypal light detectors with NTD-Ge sensors in a pulse-tube cryostat
CUPID is a next-generation bolometric experiment aiming at searching for
neutrinoless double-beta decay with ~250 kg of isotopic mass of Mo. It
will operate at 10 mK in a cryostat currently hosting a similar-scale
bolometric array for the CUORE experiment at the Gran Sasso National Laboratory
(Italy). CUPID will be based on large-volume scintillating bolometers
consisting of Mo-enriched LiMoO crystals, facing thin
Ge-wafer-based bolometric light detectors. In the CUPID design, the detector
structure is novel and needs to be validated. In particular, the CUORE cryostat
presents a high level of mechanical vibrations due to the use of pulse tubes
and the effect of vibrations on the detector performance must be investigated.
In this paper we report the first test of the CUPID-design bolometric light
detectors with NTD-Ge sensors in a dilution refrigerator equipped with a pulse
tube in an above-ground lab. Light detectors are characterized in terms of
sensitivity, energy resolution, pulse time constants, and noise power spectrum.
Despite the challenging noisy environment due to pulse-tube-induced vibrations,
we demonstrate that all the four tested light detectors comply with the CUPID
goal in terms of intrinsic energy resolution of 100 eV RMS baseline noise.
Indeed, we have measured 70--90 eV RMS for the four devices, which show an
excellent reproducibility. We have also obtained outstanding energy resolutions
at the 356 keV line from a Ba source with one light detector achieving
0.71(5) keV FWHM, which is -- to our knowledge -- the best ever obtained when
compared to detectors of any technology in this energy range.Comment: Prepared for submission to JINST; 16 pages, 7 figures, and 1 tabl
A CUPID Li2100MoO4scintillating bolometer tested in the CROSS underground facility
A scintillating bolometer based on a large cubic Li2100MoO4 crystal (45 mm side) and a Ge wafer (scintillation detector) has been operated in the CROSS cryogenic facility at the Canfranc underground laboratory in Spain. The dual-readout detector is a prototype of the technology that will be used in the next-generation 0¿2ß experiment CUPID . The measurements were performed at 18 and 12 mK temperature in a pulse tube dilution refrigerator. This setup utilizes the same technology as the CUORE cryostat that will host CUPID and so represents an accurate estimation of the expected performance. The Li2100MoO4 bolometer shows a high energy resolution of 6 keV FWHM at the 2615 keV ¿ line. The detection of scintillation light for each event triggered by the Li2100MoO4 bolometer allowed for a full separation (~8s) between ¿(ß) and a events above 2 MeV . The Li2100MoO4 crystal also shows a high internal radiopurity with 228Th and 226Ra activities of less than 3 and 8 µBq/kg, respectively. Taking also into account the advantage of a more compact and massive detector array, which can be made of cubic-shaped crystals (compared to the cylindrical ones), this test demonstrates the great potential of cubic Li2100MoO4 scintillating bolometers for high-sensitivity searches for the 100Mo 0¿2ß decay in CROSS and CUPID projects
Twelve-crystal prototype of LiMoO scintillating bolometers for CUPID and CROSS experiments
An array of twelve 0.28 kg lithium molybdate (LMO) low-temperature bolometers
equipped with 16 bolometric Ge light detectors, aiming at optimization of
detector structure for CROSS and CUPID double-beta decay experiments, was
constructed and tested in a low-background pulse-tube-based cryostat at the
Canfranc underground laboratory in Spain. Performance of the scintillating
bolometers was studied depending on the size of phonon NTD-Ge sensors glued to
both LMO and Ge absorbers, shape of the Ge light detectors (circular vs.
square, from two suppliers), in different light collection conditions (with and
without reflector, with aluminum coated LMO crystal surface). The scintillating
bolometer array was operated over 8 months in the low-background conditions
that allowed to probe a very low, Bq/kg, level of the LMO crystals
radioactive contamination by Th and Ra.Comment: Prepared for submission to JINST; 23 pages, 9 figures, and 4 table
Predicting treatment outcome using kinome activity profiling in HER2+ breast cancer biopsies
Summary: In this study, we measured the kinase activity profiles of 32 pre-treatment tumor biopsies of HER2-positive breast cancer patients. The aim of this study was to assess the prognostic potential of kinase activity levels, to identify potential mechanisms of resistance and to predict treatment success of HER2-targeted therapy combined with chemotherapy. Indeed, our system-wide kinase activity analysis allowed us to link kinase activity to treatment response. Overall, high kinase activity in the HER2-pathway was associated with good treatment outcome. We found eleven kinases differentially regulated between treatment outcome groups, including well-known players in therapy resistance, such as p38a, ERK, and FAK, and an unreported one, namely MARK1. Lastly, we defined an optimal signature of four kinases in a multiple logistic regression diagnostic test for prediction of treatment outcome (AUC = 0.926). This kinase signature showed high sensitivity and specificity, indicating its potential as predictive biomarker for treatment success of HER2-targeted therapy
Twelve-crystal prototype of Li2MoO4 scintillating bolometers for CUPID and CROSS experiments
An array of twelve 0.28 kg lithium molybdate (LMO) low-temperature bolometers equipped with 16 bolometric Ge light detectors, aiming at optimization of detector structure for CROSS and CUPID double-beta decay experiments, was constructed and tested in a low-background pulse-tube-based cryostat at the Canfranc underground laboratory in Spain. Performance of the scintillating bolometers was studied depending on the size of phonon NTD-Ge sensors glued to both LMO and Ge absorbers, shape of the Ge light detectors (circular vs. square, from two suppliers), in different light collection conditions (with and without reflector, with aluminum coated LMO crystal surface). The scintillating bolometer array was operated over 8 months in the low-background conditions that allowed to probe a very low, μBq/kg, level of the LMO crystals radioactive contamination by 228Th and 226Ra