2,879 research outputs found

    A mixed-mode bending apparatus for delamination testing

    Get PDF
    A mixed-mode delamination test procedure was developed combining double cantilever beam mode I loading and end notch flexure mode II loading on a split unidirectional laminate. By loading the specimen with a lever, a single applied load simultaneously produces mode I and II bending loads on the specimen. This mixed mode bending (MMB) test was analyzed using both finite element procedures and beam theory to calculate the mode I and II components of strain energy release rate, G sub I and G sub II, respectively. The analyses showed that a wide range of G sub I/G sub II ratios could be produced by varying the applied load position on the loading lever. As the delamination extended, the G sub I/G sub II ratios varied by less than 5 percent. The simple beam theory equations were modified to account for the elastic interaction between the two arms of the specimen and to account for shear deformations. The resulting equations agreed closely with the finite element results and provide a basis for selection of G sub I/G sub II test ratios and a basis for computing the mode I and II components of measured delamination toughness. The MMB specimen analysis and test procedures were demonstrated using unidirectional laminates

    Summary of a flight-test evaluation of the CL-84 tilt-wing V/STOL aircraft

    Get PDF
    Flight test evaluation of second generation CL-84 tilt-wing aircraft in hover, transition, and cruise mode

    Engineering tyrosine-based electron flow pathways in proteins: The case of aplysia myoglobin

    Get PDF
    Tyrosine residues can act as redox cofactors that provide an electron transfer ("hole-hopping") route that enhances the rate of ferryl heme iron reduction by externally added reductants, for example, ascorbate. Aplysia fasciata myoglobin, having no naturally occurring tyrosines but 15 phenylalanines that can be selectively mutated to tyrosine residues, provides an ideal protein with which to study such through-protein electron transfer pathways and ways to manipulate them. Two surface exposed phenylalanines that are close to the heme have been mutated to tyrosines (F42Y, F98Y). In both of these, the rate of ferryl heme reduction increased by up to 3 orders of magnitude. This result cannot be explained in terms of distance or redox potential change between donor and acceptor but indicates that tyrosines, by virtue of their ability to form radicals, act as redox cofactors in a new pathway. The mechanism is discussed in terms of the Marcus theory and the specific protonation/deprotonation states of the oxoferryl iron and tyrosine. Tyrosine radicals have been observed and quantified by EPR spectroscopy in both mutants, consistent with the proposed mechanism. The location of each radical is unambiguous and allows us to validate theoretical methods that assign radical location on the basis of EPR hyperfine structure. Mutation to tyrosine decreases the lipid peroxidase activity of this myoglobin in the presence of low concentrations of reductant, and the possibility of decreasing the intrinsic toxicity of hemoglobin by introduction of these pathways is discussed. © 2012 American Chemical Society

    Ethnicity and Hidradenitis Suppurativa

    Get PDF

    Flapping Wing Micro Air Vehicle Bench Test Setup

    Get PDF
    The purpose of this research was to develop testing methods that can be used to determine the forces, moments, and deflections involved in flapping wing aerodynamics. To pursue the research, a flapping wing mechanism and wings with spans ranging from 9.1 inches to 12.1 inches were built. A variety of mechanisms, capable of, alternatively, purely flapping, flapping with pitch, and flapping with pitch and out-of-plane motion were conceptualized and drawn using solid modeling software. Two of the simpler designs, a single degree-of-freedom flapping mechanism and the two-degree of freedom flapping mechanism were fabricated using a rapid prototype 3-D printer, and sustained operation was demonstrated. A thrust stand and a six-component force balance were used to gather force data from the flapping-only mechanism, combined with a variety of wing shapes. Four high-speed cameras were used to capture the motion of the wings. To minimize intrusiveness an array of laser dots was projected onto the wing during flapping and photogrammetry software was used to analyze the images and determine a shape profile of the wing composed of a frame and membrane during flapping. While the focus of this research was on the bench test setup development, some insight into the influence of wing design on the forces acting on the mechanism was gained

    Robust multipoint water-fat separation using fat likelihood analysis

    Get PDF
    Fat suppression is an essential part of routine MRI scanning. Multiecho chemical-shift based water-fat separation methods estimate and correct for Bo field inhomogeneity. However, they must contend with the intrinsic challenge of water-fat ambiguity that can result in water-fat swapping. This problem arises because the signals from two chemical species, when both are modeled as a single discrete spectral peak, may appear indistinguishable in the presence of Bo off-resonance. In conventional methods, the water-fat ambiguity is typically removed by enforcing field map smoothness using region growing based algorithms. In reality, the fat spectrum has multiple spectral peaks. Using this spectral complexity, we introduce a novel concept that identifies water and fat for multiecho acquisitions by exploiting the spectral differences between water and fat. A fat likelihood map is produced to indicate if a pixel is likely to be water-dominant or fat-dominant by comparing the fitting residuals of two different signal models. The fat likelihood analysis and field map smoothness provide complementary information, and we designed an algorithm (Fat Likelihood Analysis for Multiecho Signals) to exploit both mechanisms. It is demonstrated in a wide variety of data that the Fat Likelihood Analysis for Multiecho Signals algorithm offers highly robust water-fat separation for 6-echo acquisitions, particularly in some previously challenging applications. © 2011 Wiley Periodicals, Inc

    Lessons Learned from Recent Failure and Incident Investigations of Composite Structures

    Get PDF
    During the past few decades, NASA Langley Research Center (LaRC) has supported several large-scale failure and incident investigations and numerous requests for engineering consultations. Although various extenuating circumstances contributed to each of these incidents, in all cases, the failure resulted from accumulation and/or propagation of damage that reduced the load carrying capability of the structure to a level below that which was needed to sustain structural loads. A brief overview of various failure and incident investigations supported by LaRC, including some of the computational and experimental methodologies that have been applied, is presented. An important outcome of many of these failure and incident investigations is the development of an improved understanding of not only the state-of-the-art in experimental and analytical methods but also the state-of-the-art in the design and manufacturing processes that may contribute to such failures. In order to provide insight into such large-scale investigations, a series of lessons learned were captured. Awareness of these lessons learned is highly beneficial to engineers involved in similar investigations. Therefore, it is prudent that the lessons learned are disseminated such that they can be built upon in other investigations and in ensuing research and development activities

    Impact of Grazing Management Strategies on Carbon Sequestration in a Semi-Arid Rangeland, USA

    Get PDF
    The effects of 12 years of grazing management strategies on carbon (C) distribution and sequestration were assessed on a semi-arid mixed-grass prairie in Wyoming, USA. Five grazing treatments were evaluated: non-grazed exclosures; continuous, season-long grazing at a light (22 steer-days ha-1) stocking rate; and, rotationally-deferred, short-duration rotation, and continuous, season-long grazing, all three at a heavy stocking rate (59 steer-days ha-1). Non-grazed exclosures exhibited a large buildup of dead plant material (72% of total aboveground plant matter) and forb biomass represented a large component (35%) of the plant community. Stocking rate, but not grazing strategy, changed plant community composition and decreased surface litter. Light grazing decreased forbs and increased cool-season mid-grasses, resulting in a highly diversified plant community and the highest total production of grasses. Heavy grazing increased warm-season grasses at the expense of the cool-season grasses, which decreased total forage production and opportunity for early season grazing. Compared to the exclosures, all grazing treatments resulted in significantly higher levels of C (6000-9000 kg ha-1) in the surface 15 cm of the soil. Higher levels of soil C with grazing are likely the result of faster litter decomposition and recycling, and redistribution of C within the 0-60 cm plant-soil system. Grazing at an appropriate stocking rate had beneficial effects on plant composition, forage production, and soil C sequestration. Without grazing, deterioration of the plant-soil system is indicated
    • …
    corecore