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Robust Multipoint Water-Fat Separation Using Fat
Likelihood Analysis

Huanzhou Yu,1* Scott B. Reeder,2–5 Ann Shimakawa,1 Charles A. McKenzie,6–8

and Jean H. Brittain9

Fat suppression is an essential part of routine MRI scanning.

Multiecho chemical-shift based water-fat separation methods

estimate and correct for Bo field inhomogeneity. However,

they must contend with the intrinsic challenge of water-fat

ambiguity that can result in water-fat swapping. This problem

arises because the signals from two chemical species, when

both are modeled as a single discrete spectral peak, may

appear indistinguishable in the presence of Bo off-resonance.

In conventional methods, the water-fat ambiguity is typically

removed by enforcing field map smoothness using region

growing based algorithms. In reality, the fat spectrum has

multiple spectral peaks. Using this spectral complexity, we

introduce a novel concept that identifies water and fat for

multiecho acquisitions by exploiting the spectral differences

between water and fat. A fat likelihood map is produced to

indicate if a pixel is likely to be water-dominant or fat-domi-

nant by comparing the fitting residuals of two different signal

models. The fat likelihood analysis and field map smoothness

provide complementary information, and we designed an

algorithm (Fat Likelihood Analysis for Multiecho Signals) to

exploit both mechanisms. It is demonstrated in a wide variety

of data that the Fat Likelihood Analysis for Multiecho Signals

algorithm offers highly robust water-fat separation for 6-echo

acquisitions, particularly in some previously challenging

applications. Magn Reson Med 67:1065–1076, 2012. VC 2011

Wiley Periodials, Inc.

Key words: water-fat separation; fat spectral peaks; fitting
residual; multiecho; water-fat swap

Robust fat suppression is critical for many clinical appli-
cations of MRI. Recently, chemical-shift based multiecho
water-fat separation methods have been increasingly used
in routine clinical applications. These methods collect
images at multiple echo times such that the different

water-fat phase shifts can be used to estimate a Bo field

inhomogeneity map (field map) and to separate water

and fat images (1–10). Commonly two or three echoes

are collected, sufficient for qualitative water-fat separa-

tion. When more echoes are collected, newer algo-

rithms (8,11) can simultaneously estimate a T2* decay

map (8,11,12), thereby calculating water and fat images

with correction of the T2* decay and aiming for quanti-

tative applications such as assessment of fatty infiltra-

tion of the liver (13–15).

Multiecho water-fat separation methods must address

an intrinsic challenge of water-fat ambiguity. This prob-

lem arises due to the fact that both water and fat are

modeled as a single spectral peak, and their signal

behavior may appear identical in the presence of Bo off-

resonance. For example, a voxel containing only fat

‘‘looks’’ just like a voxel containing only water that is

off-resonance by �210 Hz (chemical shift) at 1.5 T. Such

ambiguities often result in an incorrectly estimated Bo

field map, further leading to water-fat swaps in part of

the image or even the entire image.

The challenge of water-fat ambiguity is commonly

addressed by assuming a slowly and smoothly varying

Bo field map. Therefore, previous multiecho water-fat

separation methods attempt to resolve water-fat ambigu-

ity by enforcing field map smoothness (4,7,9,10,16–20).

These algorithms are typically heuristic and based on var-

iations of region growing algorithms, which may be sensi-

tive to noise, the presence of artifacts and the physical

characteristics of the object. Therefore, it is challenging to

estimate the field map reliably in areas with drastic

changes of Bo field, such as near the sinus due to air/tis-

sue interface, near metal implants, or in the presence of

iron. In particular, multiecho-per-repetition sequences are

often used to collect multiple echoes in a single repetition

(8,12,21–24) in scan time sensitive applications. However,

the minimum echo time increment increases with

increase of the desired resolution, which effectively

reduces the spectral field-of-view of the field map that

can be uniquely determined (18,25). As a result, it is

more challenging to design a robust field map algorithm

for multiecho acquisitions with high resolution imaging

or at higher field strengths (e.g., 3 T). This limitation cur-

rently can lead to compromises in scan protocols.

The root cause of the water-fat ambiguity is that both
water and fat are assumed to have a single resonance fre-
quency in the spectral domain. In reality, the fat spec-
trum has multiple spectral peaks, which should allow
for unambiguous identification of water and fat if the sig-
nals are noiseless. With a multipeak model in water-fat
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separation methods (8,12), it is interesting to note that
water and fat have different expected signal behaviors, as
illustrated in Fig. 1. For the single peak model, the magni-
tude signals of either water or fat follows a flat line, while
the magnitude signals of the multipeak model show oscil-
latory pattern due to the interaction of the fat spectral
peaks with different phase evolution frequencies.

In reality, however, the signals are sampled at limited
number of times. In this work, we explore the feasibility
of using the revealed signal differences at six echo times
to distinguish water and fat. We design a new algorithm
for robust water-fat separation using the spectral difference
of water and fat in addition to field map smoothness. The
algorithm, based on fat likelihood analysis, is named Fat
Likelihood Analysis for Multiecho Signals (FLAME). We
demonstrate the effectiveness of the FLAME algorithm
combined with a 6-echo acquisition and the T2*-IDEAL
(T2*-Iterative Decomposition of water and fat with Echo
Asymmetry and Least squares inversion) reconstruction, a
water-fat separation algorithm with T2* estimation and cor-
rection (8) based on the IDEAL method (6).

METHODS AND MATERIALS

Fat Likelihood Analysis

As can be seen from Fig. 1, while water can be accu-
rately characterized by a single-peak in the spectrum do-
main, the fat spectrum is in general more complex that
consists of at least six peaks (26,27). Therefore, in the
time domain, water and fat follow different signal behav-
iors, i.e., single-peak signal behavior for water and the
multipeak signal behavior for fat. We can determine if a
pixel is fat or water by examining how well the signals
fit the single-peak model or the multipeak model. In the
T2*-IDEAL method, the field map is first estimated itera-
tively (6). When the field map is determined, water and
fat contents are uniquely determined using linear least

squares inversion (6). The ‘‘goodness’’ of the fit can be
characterized as the ‘‘residual’’ (R) for a field map solu-
tion ĉ(6,18,20), described in the following equation:

R ¼ ||ðDðĉÞ �A �Ay � Dð�ĉÞ � IÞ � s|| ½1�

where I is an identity matrix. DðĉÞ is a diagonal matrix
with elements of ej2 p ĉ t, t is a vector of echo times. s,
the signal vector, denotes the detected signals. A is a
matrix representing the expected signal behaviors of
water and fat. A† represents the pseudo-inverse of the A
matrix, i.e. (A* � A)�1 � A*. For the single peak model,
A has the following format:

Asp ¼
1 ej2pDf t1

1 ej2pDf t2

. . . . . .
1 ej2pDf tN

2
664

3
775

where Df is the chemical shift between water and fat. In
the multipeak model, the fat spectrum consists of P spec-
tral peaks, each with frequency offset Dfp and relative
amplitudes ap (

P
ap ¼ 1). Therefore, the multipeak ver-

sion of the A matrix is:

Amp ¼
1

P
ap�ej2pDfp t1

1
P

ap�ej2pDfp t2

. . . . . .
1

P
ap�ej2pDfp tN

2
664

3
775

In this work, a fat spectrum derived from the theoretical
fat composition is used (28). Therefore, both Asp and
Amp matrices are considered known. Finally, the corre-
sponding residual for single peak and multipeak models
are denoted as Rsp and Rmp, respectively.

The ‘‘residual’’ R relies on the field map value and the
model used (single peak or multipeak). A small ‘‘residual’’
suggests that the current estimates of field map, water, and
fat fit the model well. When a pixel is truly fat, the multi-
peak model should fit the signals better than the single
peak model, i.e., Rmp < Rsp for a field map solution that
suggests the pixel to be fat dominant. On the other hand,
when the pixel appears to be fat at the ‘‘swapped’’ solution
(i.e., a truly water pixel), the single-peak model should fit
the signals better than the multipeak model, i.e., Rmp >
Rsp. Based on these considerations, at each pixel, we first
find the field map value such that the corresponding fat
content is larger than the water content (i.e., fat dominant,
including fat only). We then use multipeak and single
peak models to determine if this is a ‘‘true’’ fat pixel or a
‘‘swapped fat’’ pixel. This is done by calculating and com-
paring the residual values from single peak and multipeak
models at this field map solution, leading to a ‘‘fat likeli-
hood’’ index to describe the possibility of a pixel being fat
based on the fitting residuals using the two models:

fl ¼ Rsp � Rmp

maxðRsp;RmpÞ ½2�

where Rsp, Rmp are the residuals of the fitting at a field
map solution that leads to fat content more than the
water content using the single peak model and the multi-
peak model, respectively.

FIG. 1. Spectrum domain representation and their expected signal
behaviors in the time domain for the single peak fat model and

the multipeak fat model, respectively. Because of the difference in
expected signal behaviors, it is possible to distinguish water and
fat signals by examining which of the single peak model and the

multipeak model better fit the collected signals.
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The fitting residual can be visualized on a cost-function
curve (18,20). Figure 2 shows the cost function curves for
a representative water and a fat pixel in a 6-echo abdomi-
nal T2*-IDEAL acquisition, respectively. At least two local
minima appear within one period in each cost function
(18,20), one is the true solution, and one is the solution of
water-fat swap, as can be seen from the plot of the corre-
sponding water/fat contents. For the water pixel, the mul-
tipeak model results in significantly higher residual at the
solution that leads to the incorrect identification of a ‘‘fat
pixel’’ (Rmp > Rsp, arrows). Therefore, the fat likelihood
index calculated is a negative number (fl ¼ �0.81), sug-
gesting the possibility of being a water pixel. On the other
hand, the multipeak model results in better fitting than
the single peak model for the fat pixel (i.e., Rmp < Rsp,
arrows). As a result, the fat likelihood index is a positive
number (fl ¼ 0.55). In general, a fat likelihood index
approaching 1 suggests the strong possibility of a fat
pixel, while a value approaching �1 suggests the strong
possibility of a water pixel.

Alternatively, the fat likelihood value can be obtained
by directly comparing the residuals of the neighboring

two local minima when using the multipeak model:

fl ¼ Rmp w � Rmp f

maxðR
mp w

;R
mp f

Þ ½3�

Here, Rmp_w represents the residual calculated at the field
map value corresponding to a water pixel with the multi-
peak model (dashed arrow in Fig. 2), while Rmp_f denotes
the residual calculated at the field map value correspond-
ing to a fat pixel with the multipeak model (¼Rmp in
Eq. 2). In general, Eq. 2 results in close values as Eq. 3
because in certain circumstances Rmp_w ¼ Rsp (ignoring
noise), for example, when the pixel contains only fat or
water. In this work, we will use formulation based on
Eq. 3 as it involves the T2* IDEAL iterative field map cal-
culation of only one signal model (multipeak) and is sig-
nificantly faster than the calculation based on Eq. 2.

Fat Likelihood Map

The fat likelihood analysis can be performed on a pixel-
by-pixel basis for the entire image, leading to a fat

FIG. 2. Fat likelihood analysis for a typical water (a) and fat (b) pixel from a 6-echo abdominal T2*-IDEAL scan. For the water pixel, the sin-

gle peak model fits the data better than the multipeak model (arrows), leading to a negative (�0.81) fat likelihood index. On the other
hand, for the fat pixel, the multipeak model results in smaller residual than the single peak model (arrows), leading to a positive fat likeli-

hood index (0.55). The dotted arrows point to field map values that correspond to a water pixel solution using the multipeak model (Rmp_w

in Eq. 3), used as an alternative way to determine the fat likelihood value. The water (c) and fat (d) images are also shown for reference.
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likelihood map, as shown in Fig. 3a. In this fat likelihood
map, a value close to 1 (red) suggests high likelihood of
being a fat pixel, whereas a value close to �1 (blue) sug-
gests high likelihood of being a water pixel. The fat likeli-
hood map is in general very consistent with the actual
distribution of water and fat (Fig. 2c,d). It is important to

note that the fat likelihood map is generated independent
of the field map and is therefore fundamentally different
from conventional field map based methods.

One approach to use the fat likelihood map is to
identify all pixels with positive fat likelihood values as
fat-dominant, while all pixels with negative values as

FIG. 3. Flow diagram of the FLAME algorithm. The pixel-by-pixel fat likelihood analysis produces a fat likelihood map (a), based on which,
initial estimates of fat (b), water (c) and field map (d) are made in ‘‘step 1.’’ Two weighting maps are then generated based on the fat likeli-
hood analysis (e, ‘‘step 2’’) and the characterization of the field map smoothness (f, ‘‘step 3’’). In step 4, an averaged field map (g) is calcu-
lated, where the local averaging is weighted by the two weighting maps. Finally, the initial estimates are updated (h). This completes one
iteration. Note that the majority part of the water-fat swap appeared in the initial estimate (dome of liver) remains. Steps 2–4 are repeated until
no pixel needs to be updated. [Color figure can be viewed in the online issue, which is available at wileyonlinelibrary.com.]
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water-dominant. The results are shown in Fig. 3b,c. De-
spite the fact that majority pixels are correctly identified,
there are small areas of pixels that are mislabeled, for
example at the dome of the liver. The remaining water-fat
swaps typically happen in places where the fat likelihood
map shows a low probability of being either water or fat.
This uncertainty comes from the presence of noise, arti-
fact, rapid T2* decay or inaccuracies in the spectral model-
ing of fat. This approach makes binary decision based on
the fat likelihood maps, without differentiation between
pixels having high confidence (high likelihood value) and
pixels having high uncertainty (small likelihood value). To
address this concern, we introduce an algorithm for robust
identification of water and fat that takes advantage of the
rich information of the fat likelihood map using the
approach of ‘‘weighting maps.’’ The field map smoothness
is also taken into consideration as it provides valuable com-
plementary information. The overall flow is shown in Fig.
3 using abdominal data as an example.

Step 1: Initial Estimates of Water, Fat, and Field Map

The water and fat images shown in Fig. 3b,c serve as an
excellent first estimate. The corresponding field map is
also determined. At each pixel, the field map solution
that leads to the identification of water and fat consistent
with the fat likelihood value (i.e., Fig. 3b,c) is used as
the initial estimate for that pixel. For example, for the
water pixel shown in Fig. 2a, the chosen field map value
is �40 Hz. Similarly, for the fat pixel shown in Fig. 2b, a
value of �4 Hz is assigned. This pixel-by-pixel process
leads to Fig. 3d, the initial estimate of the field map.

Step 2: Produce a Weighting Map Based on Fat
Likelihood Analysis

As mentioned previously, the initial estimates come
from the binary decision of the fat likelihood map. To
take advantages of the inherent full range of the fat like-
lihood values, a weighting map based on the fat likeli-
hood analysis (Wfl(x,y)) is produced by simply taking the
absolute values of the fat likelihood map, as shown in

Fig. 3e. This weighting map describes how confident we
are with the initial estimates (Fig. 3b–d) based on fat
likelihood analysis. A high value in Wfl(x,y) (close to 1
or blue in Fig. 3e) suggests that the initial estimates are
very likely to be correct, while a low weight (close to 0
or red in Fig. 3e) represents low confidence in the cur-
rent estimates.

Step 3: Produce a Second Weighting Map by
Characterizing Field Map Smoothness

The FLAME algorithm still uses the field map smooth-
ness as a complementary source of information beyond
the fat likelihood analysis. For a given estimate of the
field map, we introduce an algorithm to characterize the
field map smoothness, producing a second weighting
map: Wsm(x,y). The final Wsm(x,y) is shown in Fig. 3f,
while the process of generating such a weighting map is
illustrated in Fig. 4. First, a ‘‘seed’’ pixel (x_maxc,y_
maxc) is identified by selecting the pixel with the high-
est confidence in Wfl(x,y) in step 2 (arrow in Fig. 4a). A
value of 1 is assigned to the Wsm(x,y) value for this seed
pixel (i.e., Wsm(x_maxc,y_maxc)¼1).

The algorithm then follows the slowest gradient in the
field map to select the next pixel (4). For each pixel
along this minimum field map gradient trajectory, the
Wsm(x,y) value is calculated based on the Wsm(x,y)
values of neighboring pixels that have been already
determined:

Wsmðx; yÞ ¼
P
n
Wsmðxn; ynÞ � jsðxn; ynÞj � e�f �ðcðx;yÞ�cðxn;ynÞÞ2

P
n
jsðxn; ynÞj

½4�

where (xn, yn) indicates the neighboring pixels of the
pixel (x, y). In our implementation, the ‘‘neighbor’’ is
defined as all pixels in a kernel of 15 � 15 pixels. The
averaging of Wsm(x,y) is weighted by the signal strength
(|s(xn,yn)|) and the field map difference between the
current pixel (c(x, y)) and the neighboring pixels (c(xn,

FIG. 4. Multiple iterations of the process to generate the weighting map (Wsm(x,y)) by characterizing field map smoothness. The trajec-
tory starts from the pixel with the highest Wfl(x,y) value (arrow), then follows the slowest field map gradient direction for the next pixel.
The Wsm(x,y) value is determined from the averaged Wsm(x,y) in its neighborhood, deducted by an amount scaled with the field map
changes between the current pixel and its neighbors. Therefore, the Wsm(x,y) maintains its value in areas with smooth field map variation
(blue), while loses its value rapidly when the field map experiences sharp transitions. As a result, the areas with correct field map esti-
mation are labeled with high values (blue) while the areas with possible water-fat swap (e.g., the dome of the liver) are labeled with low
values (red). [Color figure can be viewed in the online issue, which is available at wileyonlinelibrary.com.]
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yn)). Therefore, the Wsm(x,y) value of the current pixel
can be considered as the average of Wsm(x,y) values at the
neighboring pixels reduced by an amount that increases
with the field map difference between those pixels. There-
fore, Wsm(x,y) loses its value slowly when the field map
varies slowly, while Wsm(x,y) drops rapidly when the
field map experiences sharp jumps, which typically indi-
cate a water-fat swap. f is a ‘‘friction factor’’ that controls
how fast the Wsm(x,y) loses its value. Wsm(x,y) is more
sensitive to the field map variation with a bigger ‘‘friction
factor.’’ In our implementation, f is selected empirically
such that there is sufficient contrast in Wsm(x,y) values
between correctly and incorrectly estimated field map
areas (Df is the chemical shift frequency):

f ¼ 4

Df 2
½5�

Snap-shots of multiple steps illustrating the process of
generating Wsm(x,y) are shown in Figure 4. Like Wfl(x,y),
a value close to 1 represents areas with high confidence
(smooth field map variation), while a value close to 0
indicates regions with possible water-fat swap.

Step 4: Update the Estimates Using the Two
Weighting Maps

In both weighting maps (Wfl(x,y) and Wsm(x,y)), large val-
ues suggest high confidence in the current estimates,
whereas low values suggest a high likelihood of a water-
fat swap. Therefore, the weighting maps can be used to
find those pixels with possible water-fat swaps and recal-
culate their field map values. This is achieved by first cal-
culating a locally averaged field map (cwa), weighted by
the signal strength and the two weighting maps.

cwaðx; yÞ ¼
P
n
cðxn; ynÞ � jsðxn; ynÞj �Wflðxn; ynÞ �Wsmðxn; ynÞ

P
n
jsðxn; ynÞj �Wflðxn; ynÞ �Wsmðxn; ynÞ

½6�

At the boundary of possible water-fat swap, those pixels
with higher weights contribute to the averaging substan-
tially more than those with less weights. Therefore, the
correctly estimated field map is able to ‘‘penetrate’’ into
those incorrectly estimated areas, as shown in Fig. 3g.

Finally, cwa is compared with the current field map
estimate c. At pixels with substantial difference, the
field map is recalculated using cwa as the initial guess.
This process ensures the growth of the correctly esti-
mated areas, as shown in Fig. 3h with the water and fat
estimates also updated.

This completes one iteration. Figure 3h then replaces
the initial estimates (Fig. 3b–d), followed by more itera-
tions, where steps 3 and 4 are repeated, until no pixel
needs to be recalculated in step 4.

RESULTS

Figure 5 presents the intermediate and final results of
applying the FLAME algorithm to the 6-echo abdominal
scan of a healthy volunteer shown earlier in Figs. 2–4.
This 6-echo scan was acquired at 3 T with echo time,

TE1 ¼ 1.3 ms, DTE ¼ 1.0 ms (0.86p in phase shift
between water and fat) and parallel imaging acceleration
factor of 2.2. A superior slice was chosen as a challeng-
ing case, where there is often big field map variation at
the dome of the liver due to the air-tissue interface.
Throughout the iterations, Wsm(x,y) was updated and
accurately captured the boundary between the correctly
estimated and swapped areas. The two weighting maps
drove the improvement of the next iteration, and the
area with incorrect estimates continuously eroded. In 21
iterations, correctly separated water, fat, and field map
were obtained.

Figure 6 shows results from a 6-echo abdominal scan
at 3 T with TE1 ¼ 1.2 ms, DTE ¼ 1.5 ms (1.3p of phase
shift between water and fat). Such a long echo spacing is
challenging for traditional methods, because it effectively
reduces the sampling rate in the spectral domain, lead-
ing to a smaller range of field map that can be unambigu-
ously determined. In T2*-IDEAL acquisitions with equally
spaced echoes, the field map solutions are periodic with
the period inversely proportional to the echo spacing
(18). Therefore, the local minima are closer to the true so-
lution with longer echo spacing scans, and thus they are
more difficult to discriminate. With the FLAME algo-
rithm, the fat likelihood map (Fig. 6a) accurately pre-
dicted the water-fat distribution, leading to an excellent
initial water-fat separation (Fig. 6b,c). Only a few more
iterations were required to obtain a correct water-fat sepa-
ration (Fig. 6d). For comparison, the water-fat separation
from a field map based region growing algorithm (20) is
also shown in Fig. 6e. A water-fat swap occurred in the
right lobe of the liver, where the incorrectly estimated
field map appears smooth with respect to the field map
values nearby in subcutaneous fat, making it particularly
challenging for conventional field map based methods.

Robust water-fat separation in the presence of uncon-
nected, discontinuous tissues has always been challeng-
ing for region growing based algorithms, as region grow-
ing may be inadequate when the trajectory traverses
through the noise regions between tissue segments.
Figure 7 shows such a challenging slice in a coronal
head-neck-shoulder acquisition at 3 T with TE1 ¼ 1.2
ms, DTE ¼ 1 ms (0.84p of phase shift between water and
fat). While the conventional region growing technique
(Fig 7e) worked well in the shoulder area, it resulted in
a complete swap of water and fat in the head area. With
the FLAME algorithm, the fat likelihood map (Fig. 7a)
and the derived Wfl(x,y) (Fig. 7b) are generated on a
pixel-by-pixel-basis, and therefore are fundamentally
insensitive to the tissue connections, providing an excel-
lent set of initial estimates (Fig. 7c). Despite the fact that
the Wsm(x,y) only provided useful weighting in the head
area, the algorithm was still able to rely on the Wfl(x,y)
in the shoulder area for accurate water-fat identification.
The FLAME algorithm is promising for isolated tissue
‘‘islands’’ because the Wfl(x,y), which exploits spectral
differences between water and fat, and the Wsm(x,y),
which exploits field map smoothness, are complemen-
tary and independent mechanisms that can be used to
avoid water-fat swapping.

Water-fat separation in the presence of iron overload is
also a challenging application. Figure 8 presents results
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from a liver patient with severe iron overload (1.5 T,
TE1 ¼ 1.0 ms, DTE ¼ 1.6 ms or 0.67p of phase shift
between water and fat). The R2* map from T2*-IDEAL is
shown in Fig. 8f. T2* measured in the liver is approxi-
mately 1.4 ms, significantly shorter than the normal range
of T2* (> 20 ms (29)). As a result, the liver signals decay
away rapidly, diminishing SNR with the increase of echo
times. The noisy and erroneous estimate of the field map
in the liver is propagated to the nearby subcutaneous fat
area due the region growing process, causing water-fat
swapping, even in areas with reasonable SNR (Fig. 8e).
The FLAME algorithm resulted in an accurate fat likeli-

hood map (Fig. 8a). In liver, fat likelihood values are close
to zero due to lack of SNR to support a confident deci-
sion. Despite this uncertainly, the initial estimates from
the FLAME algorithm correctly decomposed water and fat
in areas outside liver, including subcutaneous fat (Fig.
8c). These high confidence pixels helped the estimation
of the liver pixels in later iterations, and correct water-fat
separation was obtained after nine iterations (Fig. 8d).

Finally, results from a patient with significant hepatic
fatty infiltration are shown in Figure 9 (1.5 T, TE1 ¼ 1.2
ms, DTE ¼ 2.0 ms or 0.84p of phase shift between water
and fat). The fat likelihood map (Fig. 9a) is in good

FIG. 5. Intermediate images (c–e) and the final results (f) of applying FLAME algorithm to the 6-echo abdominal scan shown in Figs. 2–
4. For convenience, the fat likelihood map (a) and the weighting map Wfl(x,y) (b) are also included. [Color figure can be viewed in the
online issue, which is available at wileyonlinelibrary.com.]
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agreement with the true distribution of water and fat,
leading to a reliable Wfl(x,y) (Fig. 9b) and excellent ini-
tial estimates (Fig. 9c). Because of the highly accurate
initial estimates, a uniform water-fat decomposition was
achieved after only one iteration (Fig. 9d).

DISCUSSION

Field map estimation is a critical step in multiecho
chemical shift based water-fat separation methods. It of-
ten suffers from an intrinsic ambiguity problem, where
incorrectly estimated field map values can lead to water-
fat swaps. Conventional water-fat separation methods
rely on enforcing field or phase smoothness to resolve
this water-fat ambiguity. In this work, we introduce a
novel approach to identify water and fat by exploiting
the spectral complexity of fat. A fat likelihood map is

produced to indicate whether a pixel is likely to be
water-dominant or fat-dominant on a pixel-by-pixel ba-
sis, completely independent of field map estimation. The
fat likelihood analysis and field map smoothness provide
complementary information, and we designed an algo-
rithm (FLAME) to take advantage of both mechanisms.
FLAME relies largely on pixel independent processing,
and therefore is fundamentally less sensitive to the com-
plexity of the imaged objects. Minimizing the depend-
ence on region growing also prevents errors from spread-
ing to other parts of the image. The fat likelihood map is
not susceptible to an incorrect center frequency, a situa-
tion that may occur when imaging fat dominant anat-
omy. Finally, it is demonstrated that the FLAME algo-
rithm may offer reliable water fat separation for scans
with long echo spacing scans. Such scans are hindered
by increasing difficulty in discriminating the local

FIG. 6. Results from a scan with long echo spacing (TE1 ¼ 1.2 ms, DTE ¼ 1.5 ms or 1.3p in water-fat phase shift) at 3 T. The fat likelihood map
(a) is in close agreement with the actual water-fat distribution, leading to a high quality Wfl(x,y) (b) and the initial estimates (c). A successful water-
fat separation was obtained after only three iterations (d). Such a long echo spacing is challenging for a traditional field map based region growing
algorithm, which resulted in water-fat swaps (e). [Color figure can be viewed in the online issue, which is available at wileyonlinelibrary.com.]
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minima from the true solution (18,20). In the past, com-
promises have been made by, for example, reducing the
spatial resolution or interleaving multiple multiecho
sequences (30) which inevitably increases the scan time.
Therefore, improving the robustness of the long echo
spacing scans may enable water-fat separation in previ-
ously challenging applications, including at high field
strengths, in high spatial resolution, and scan time sensi-
tive applications.

Many factors can affect the accuracy of the fat likeli-
hood maps, including the presence of noise, artifacts, or
phase errors that could change the residual relationship
between the true solution and local minima. In particular,
how well the difference between the single peak and mul-
tipeak signal behaviors can be ‘‘observed’’ varies with the
T2* decay. In the presence of extremely rapid T2* decay,
the signal difference between the models becomes increas-

ingly difficult to measure, making the accuracy of the fat
likelihood value more sensitive to noise, artifacts or phase
errors. The fat spectrum is assumed to be known, includ-
ing the frequency and the relative amplitude of the peaks.
We have used a model derived from the theoretical com-
position of fat (28). However, we found the fat likelihood
maps often appear similar even when using different fat
spectral models. An example is shown in Figure 10. Fat
likelihood maps of an abdominal slice are calculated
based on three different fat spectra: the default fat spec-
trum reported by Hamilton et al. (28) and used in this
work, a fat spectrum based on a scan in a vegetable oil
phantom (11), and a self-calibrated fat spectrum derived
from 6-echo data (11). All fat likelihood maps are in excel-
lent agreement with the water-fat distribution. Performing
the FLAME algorithm with any of these spectra leads to
successful decomposition of water and fat.

FIG. 7. Results from a 6-echo scan at 3 T to demonstrate the robust water-fat separation using FLAME when there are disconnected
tissue areas. The fat likelihood map (a) and the derived Wfl(x,y) (b) were generated on a pixel-by-pixel basis, therefore are fundamentally
insensitive to tissue connections, leading to excellent the initial estimates (c) in both head and shoulder tissue areas. A correct water-fat
separation was obtained after only four iterations (d). The conventional field map based region growing method suffered from water-fat
swap in the head area (e). [Color figure can be viewed in the online issue, which is available at wileyonlinelibrary.com.]
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In addition, the accuracy of the fat likelihood map
may be sensitive to the number of echoes used. Intui-
tively, the difference between the single peak and multi-
peak signal behaviors is better revealed when more ech-
oes are collected (i.e., longer ‘‘observation window’’),
leading to more accurate fat likelihood maps. Future
work will attempt to understand the sensitivity of the fat
likelihood accuracy on the number of echoes. In particu-
lar, applying FLAME to a 3-pt acquisition will be
explored and optimized. We have illustrated the FLAME
algorithm primarily using water-only and fat-only pixels
as examples. However, the fat likelihood analysis also
applies to pixels with mixed concentration of water and
fat. In fact, the local minima of the mixed pixels are

associated with larger residuals even in the single peak
modeling (20), therefore, the fat likelihood values are
more accurate when water and fat are mixed. This is the
motivation behind some algorithms that explore low-
resolution reconstructions (18,31,32) for robust field map
estimation, an approach FLAME can also use to improve
the robustness.

The FLAME algorithm can be implemented with great
computational efficiency. In our approach, the two possi-
ble field map solutions are found through T2*-IDEAL
Gauss-Newton iterations (6) at each pixel during the ini-
tialization step. As a result, during the following steps
(steps 2–4 in Fig. 2), no Gauss-Newton iteration needs to
be performed, while the proper field map can simply be

FIG. 8. Results from a 6-echo scan at 1.5 T in a patient with severe hepatic iron overload. The fat likelihood map (a) and the Wfl(x,y) (b)
provided accurate water-fat identification outside of the liver, while showed high uncertainty in liver due to the lack of signals. Nonethe-
less, the quality of the initial estimates (c) was adequate for the algorithm to complete in nine iterations (d). In contrast, the region grow-
ing method suffered from the poor SNR in the liver. The errors were propagated to the subcutaneous fat region, resulting in substantial
water-fat swap in both inside and outside the liver (e). The map (f) from T2*-IDEAL reconstruction suggests high level of iron concentra-
tion in liver (T2* ¼ 1.4 ms). [Color figure can be viewed in the online issue, which is available at wileyonlinelibrary.com.]
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picked from the initialized candidates, taking into con-
siderations that the field map solutions are periodic (18).
Alternatively, it may be possible to calculate the field
map candidates using an algebraic formulation (17) or
other nonlinear estimation methods (9,16), completely
eliminating the need for the Gauss-Newton iterations.
Furthermore, deriving Wfl(x,y) from the fat likelihood
map involves minimal computation (flip of the signs),

while Wsm(x,y) can be updated from iteration to iteration
efficiently as the trajectory remains the same until it hits a
pixel whose field map value has changed. Finally, not all
pixels need to be evaluated at every iteration. Only those
pixels that are close to a pixel that has changed field map
value need to be evaluated. Therefore, fewer and fewer
pixels are visited with increasing iterations. For our imple-
mentation, most computation is spent in initialization of

FIG. 9. Results from a 6-echo scan at 1.5 T in a patient with 40% hepatic fatty infiltration measured from T2*-IDEAL. The fat likelihood
map (a) is in excellent agreement with the actual water-fat distribution, leading to highly accurate Wfl(x,y) (b) and initial estimates (c).
It required only one iteration to obtain the final and uniform water-fat separation (d). [Color figure can be viewed in the online issue,
which is available at wileyonlinelibrary.com.]

FIG. 10. Fat likelihood maps (b, c, d) using three different fat spectra in a 6-echo scan at 1.5 T show substantial similarities, demon-
strating that FLAME algorithm generally does not require highly precise fat spectrum modeling. Water and fat images are shown for
reference (a). [Color figure can be viewed in the online issue, which is available at wileyonlinelibrary.com.]
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the fat likelihood map, which is roughly the same as per-
forming pixel-independent T2*-IDEAL twice but without
region growing (20). The fat likelihood map is processed
on a pixel-by-pixel basis and thus can be greatly acceler-
ated using multicore computation platforms.

In this work, T2*-IDEAL is used to demonstrate the
FLAME algorithm. However, the concept of the fat likeli-
hood analysis can be applied in a variety of water-fat
separation techniques that allow the evaluation of fitting
residuals using single peak and multipeak models. Vari-
ous approaches may be explored to make the water and
fat spectra more distinct from each other, e.g., prepara-
tion pulses or collecting additional low resolution ech-
oes. FLAME may be applied in fat quantification algo-
rithms that are based on the magnitude signals (12). In
such ‘‘magnitude-based’’ algorithms, phase information
is discarded and thus the field map is not estimated.
Therefore, water-fat ambiguity is not resolved and fat-
fraction can only be uniquely determined in a 50%
range. By evaluating the fitting residuals using the single
peak and multipeak models, it is possible to generate a
fat likelihood map, potentially achieving a full 0–100%
range using the magnitude-based methods. Finally, the
FLAME algorithm can be easily extended to 3D, further
improving its efficiency and robustness.

In conclusion, we introduced a novel approach for
reliable identification of water and fat by exploiting their
spectral differences. It adds another useful dimension to
improve the robustness of multiecho water-fat separation
methods in addition to conventional field map based
approaches. We have described a new algorithm,
FLAME, that combines the strength of both the spectral
analysis and field map smoothness mechanisms. Results
were demonstrated in a wide variety of data showing
that the FLAME algorithm offers highly robust water-fat
separation for 6-echo acquisitions, particularly in some
previously challenging applications.
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