
Air Force Institute of Technology Air Force Institute of Technology 

AFIT Scholar AFIT Scholar 

Faculty Publications 

3-1-2012 

Flapping Wing Micro Air Vehicle Bench Test Setup Flapping Wing Micro Air Vehicle Bench Test Setup 

David H. Curtis 

Mark F. Reeder 
Air Force Institute of Technology 

Craig E. Svanberg 

Richard G. Cobb 
Air Force Institute of Technology 

Gregory H. Parker 
Air Force Research Laboratory 

Follow this and additional works at: https://scholar.afit.edu/facpub 

 Part of the Aerodynamics and Fluid Mechanics Commons 

Recommended Citation Recommended Citation 
Curtis, David H.; Reeder, Mark F.; Svanberg, Craig E.; Cobb, Richard G.; and Parker, Gregory H., "Flapping 
Wing Micro Air Vehicle Bench Test Setup" (2012). Faculty Publications. 146. 
https://scholar.afit.edu/facpub/146 

This Article is brought to you for free and open access by AFIT Scholar. It has been accepted for inclusion in 
Faculty Publications by an authorized administrator of AFIT Scholar. For more information, please contact 
richard.mansfield@afit.edu. 

https://scholar.afit.edu/
https://scholar.afit.edu/facpub
https://scholar.afit.edu/facpub?utm_source=scholar.afit.edu%2Ffacpub%2F146&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/222?utm_source=scholar.afit.edu%2Ffacpub%2F146&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholar.afit.edu/facpub/146?utm_source=scholar.afit.edu%2Ffacpub%2F146&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:richard.mansfield@afit.edu


Volume 4 · Number 1 · 2012

Flapping Wing Micro Air Vehicle
Bench Test Setup*

David H. Curtis1, Mark F. Reeder2, Craig E. Svanberg3,
Richard G. Cobb4

Air Force Institute of Technology, Wright-Patterson AFB, Ohio 45433-7765, USA

Gregory H. Parker5

Air Force Research Laboratory (AFRL/RB), Wright -Patterson AFB, Ohio 45433-7765, USA

ABSTRACT
The purpose of this research was to develop testing methods that can be used to
determine the forces, moments, and deflections involved in flapping wing aerodynamics.
To pursue the research, a flapping wing mechanism and wings with spans ranging from
9.1 inches to 12.1 inches were built. A variety of mechanisms, capable of, alternatively,
purely flapping, flapping with pitch, and flapping with pitch and out-of-plane motion
were conceptualized and drawn using solid modeling software.  Two of the simpler
designs, a single degree-of-freedom flapping mechanism and the two-degree of freedom
flapping mechanism were fabricated using a rapid prototype 3-D printer, and sustained
operation was demonstrated.  A thrust stand and a six-component force balance were
used to gather force data from the flapping-only mechanism, combined with a variety of
wing shapes.  Four high-speed cameras were used to capture the motion of the wings.  To
minimize intrusiveness an array of laser dots was projected onto the wing during flapping
and photogrammetry software was used to analyze the images and determine a shape
profile of the wing composed of a frame and membrane during flapping. While the focus
of this research was on the bench test setup development, some insight into the influence
of wing design on the forces acting on the mechanism was gained.    

NOMENCLATURE
T = Cycle period
Th = Thrust
b = Wingspan
Pm = Motor Power
n = Flapping frequency
r = Air Density
CT = Thrust Coefficient
CP = Power Coefficient
FM = Figure of Merit
r = Euclidian Distance between points in the x-y plane
w = Radial Basis Function Weights
ϕ(r) = Radial Basis Function
Φ = Matrix of Radial Basis Function solutions
∆x = Difference between points in the x direction
∆y = Difference between points in the y direction
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1. INTRODUCTION
Technological advancements in many fields including micro-electronics, sensors, micro-
electromechanical systems, and micro-manufacturing, are leading to an increased role for small aerial
vehicles, generally termed Micro Air Vehicles (MAVs).  The expectation that vehicles the size of a
small bird, or even an insect, can be built leads to new challenges and opportunities in experimental
testing. On very small scales, there are expectations that a flapping wing design, like that of natural
flyers, might be more efficient or at least might have lower observability than propeller-driven aircraft.  

As with all aircraft testing, scale can affect the performance of the vehicle, both due to aeroelasticity
and Reynolds number effects. However, unlike traditional aircraft tests which are ideally carried out
with large models in wind tunnels to minimize these effects, MAV testing requires small but precise
measurement equipment for very small scales. One of the goals of the Air Vehicles Directorate of the
Air Force Research Laboratory (AFRL) is to improve their ability to comprehensively test a variety of
MAV designs. As part of that goal, a collaborative effort between the Air Force Institute of Technology
(AFIT) and AFRL has been undertaken to improve research and develop test methodology specific to
MAV testing. Herein, we document initial phases of our efforts to explore two facets of measurement
technology which are important to those who develop, test, and compare original MAV designs.
Indeed, variants of the techniques we explore herein might even prove useful in characterizing natural
flyers.

Our series of tests includes measurements and analysis of data acquired with a six-component
balance capable of measuring the forces and moments acting on the MAV. Six-component balances are
very commonly used throughout wind tunnel testing because of their fidelity, reliability, and usefulness
in providing important design data. There are a number of new challenges associated with traditional
balance testing for MAVs, including the competing requirements of the size limitations and the inertial
load due to moving wings. Limiting factors for our 6-component balance are explored on a cursory
level by comparison to data collected with a load cell and a MAV mounted to a nearly-frictionless, air
bearing table in a static test environment. 

While force and moment measurements would be expected to yield critical insight into the
performance of a MAV, the reasons why one design might outperformed another require additional
scrutiny. The second class of measurements performed relate to wing shape deformation during the
flapping motion. Traditional photogrammetry methods often require either natural markings or
artificial, fixed targets affixed to surfaces. This limits the utility of photogrammetry when studying the
deformation of very lightweight wings.  The additional weight of a fixed target is negligible for heavy
fixed wing aero elastic measurement, but even ink markings can significantly alter the weight and
moment of inertia of the lightweight wings used in flapping for MAVs.  This motivated the
implementation and enhancement of a technique for measuring three components of deformation of
wings without the requirement of physical targets on the wing. Rather, a combination of laser dot
projection and high speed cameras were used to capture the three-dimensional shape of the wing
surface during the stroke.

Although the primary goal of our work was to explore and characterize appropriate test techniques
for MAVs, one of the intermediate steps required that a mechanical flapping-wing device, mimicking
a flapping-wing MAV, be well-characterized. Rather than using an off-the-shelf model, a few flapping-
wing models were designed and built in-house using SolidWorks. The flapping-wing model parts were
built with an Objet Eden 3-D printer and a few off-the-shelf components, such as bearings. A model
which included pitch variation in addition to flapping was among the designs built. Kinematics
software was used to characterize the motion of the wing for flapping mechanisms. In addition to
providing a test mechanism for the two techniques described above, this procedure also enhanced our
ability to design and build MAVs and their components in the future.  

2. BACKGROUND
A. Flapping mechanism
There have been many attempts to mimic the flapping motion used by natural flyers. There are three
primary degrees of freedom associated with flapping.  In-plane motion is the up and down motion, and
is perpendicular to the direction of flight.  Out-of-plane motion is the motion forward and backward,
and pitching motion is twisting of the wing along its primary axis.  Banala and Agrawal [1] created a
mechanism that is capable of all three degrees of motion.  It utilized a five bar mechanism for both the
in-plane and out-of-plane motion, and a four bar mechanism for the pitching motion. This allows the
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mechanism to produce the figure eight wing tip pattern that insects are known to exhibit in flight.  Other
researchers, such as Issac, Colozza, and Rowles [2], have achieved pitching motion through the use of
servomotors located in-line with the wing, while others have used torsional springs in-line with the
wing to study the affect of passive pitching caused by the inertial and aerodynamic loads[3].   

B. Force measurement
Wilson and Werely [3] used load cells that utilized strain gauges in their experiments to measure
flapping wing lift.  They directly applied the load cell to the root of the wing in such a way as to
measure the lifting force.  Force data were taken over the entire cycle and averaged to give the overall
lift at a given frequency. Singh and Chopra [4] utilized a similar technique to measure the aerodynamic
and inertial loads with strain gauges.  They set up the strain gauges along the root of the wing so that
the two orthogonal bending moments could be sensed.  With this method they were able to determine
the forces that were acting on the wing in the directions normal and tangential to the wing chord
throughout the stroke.  In order to translate this data into a more useful coordinate frame, in terms of
lift and thrust, they used a Hall effect sensor to determine the location of the wing within its cycle
corresponding to the force data.  Another method involved mounting the flapping mechanism such that
frictionless motion was allowed in the vertical and horizontal directions.  Linear position sensors were
then used to determine the axial and lift forces[5]. 

C. Photogrammetry
The process of using multiple synchronized cameras to capture three dimensional data about wings in
flapping motion is not a new one.  Stewart and Albertani [6] have done work in which a Visual Image
Correlation (VIC) system has been used to determine the deformation of flexible flapping wings.  A
random speckle pattern was applied to flexible wings, as well as to a rigid plate that was fixed to the
inboard section of the wing.  The rigid plate gave a reference to the rigid motion of the wing due to the
flapping.  Using the speckle pattern on the rigid plate, the software is able to determine 3D data which
can be used to create a transformation matrix.  This transformation matrix is applied to the 3D data
acquired from the speckle pattern on the flexible wing to determine the deformation data for the wing.
Other techniques have been proven that use uniform printed, or sticker targets to determine deformation
data.  One problem with these techniques is that the added mass of the targets can be significant for the
lightweight wings required on flapping wing MAVs.  A solution may be projecting an array of dots onto
the wing with a laser, and then using traditional photogrammetry and videogrammetry techniques to
analyze the 3D locations of the points.  This method has been successfully demonstrated on Gossamer
space structures by Pappa, Black, Blandino, Jones, Danehy and Dorrington [7].  Because they were
investigating motion of large membranes, they were able to utilize a white light projector that projected
an array of targets.  To our knowledge this method has not been attempted for high frequency flapping
wings. 

Variation in the span during flight occurs in nature, with, for instance, Pennycuick [8] showing
through video analysis that the span during the upstroke of a cormorant was approximately 70 percent
of that for its downstroke.  Hong and Altman [9] have shown that wings with spanwise camber
demonstrate an ability to produce greater lift than similar straight wings.  Analysis of flow velocity data
captured through PIV demonstrates that during the downstroke the cambered wing produces more
positive lift force than the straight wing, while during the upstroke the cambered wing produces less
negative lift force than the straight wing.  This phenomenon was further investigated through the use
of the laser dot projection technique.  

Lasers have been used in other ways to measure the flow around flapping wings as well as their
shape.  Heathcote, Martin, and Gursul [10] used a laser sheet and particle image velocimetry (PIV) to
investigate the flow field around wings of varying flexibility flapping in water.  The laser sheet
illuminated the particles in the fluid as well as the wing.  The phase lag between the leading edge and
the trailing edge was measured, force data were taken, and the benefits of flexibility to thrust
production were shown.  Rojratsirikul, Wang, and Gursul [11] used a laser sheet and high speed
cameras to study the deflection and mode shapes of membrane airfoils at different angles of attack.  Lui,
Kuykendoll, Rhew, and Jones [12] used a laser scanner on a FARO arm to give 3D surface
representation of the wings of various birds.  The surface profiles then allowed them to give a detailed
description of the wing motion by looking at high speed video of the birds in flight.  
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3. EXPERIMENTAL PROCEDURE
Before experimentation could begin, a flapping mechanism needed to be designed and built.  Three
different mechanisms, each capable of an additional degree of motion, were designed.  SolidWorks was
used as a design tool.  This tool allowed the mechanism parts to be designed, and the pieces to be
assembled before they were physically produced.  When the design was completed, an Objet Eden
500V three-dimensional printing machine was used to fabricate the mechanism parts.  Once the
mechanisms were designed and built, testing could be completed.  The test setup involved a six
component force balance, four Photron MC2 High Speed Digital Cameras, and two laser diodes.  This
combination of instruments gives the capability of studying the forces and deformations involved in the
operation of flapping wing micro air vehicles. 

A. Wing design and construction 
Two different wing types were used for the tests reported here.  Initial testing using a load cell and air
bearing table for force measurement was done using the wings shown in Figure 1. These wings were
constructed using carbon fiber rods for spars and structural support, and Mylar® was used for the
membrane material.  The wing spar was a carbon fiber rod with a diameter of 0.05” for added stiffness,
while smaller carbon fiber rod with a diameter of 0.04” was used for the root chord and diagonal spar
pieces.  The frame was created and laid over the Mylar® which was then attached to the carbon fiber
rods using thin layers of lightweight adhesive tape. This had a negligible impact on the inertial and
aeroelastic properties of the primary materials.  A small brace is used to connect the corner leading edge
to the root chord.  The edges of the wing were reinforced with a piece of clear tape to prevent tearing.
Four sets of wings were constructed at varying sizes, but all with an aspect ratio of two [14].  

FFiigguurree  11.. Carbon Fiber Wings with Mylar Membrane.   Wing #1 – Spar length = 4” Chord Length = 2”
Wing Span = 12.1”. Wing #2 – Spar length = 3.5” Chord Length =1.75” Wing Span = 11.1”. Wing #3 – Spar
length = 3” Chord Length = 1.5” Wing Span = 10.1”. Wing #4 – Spar length = 2.5” Chord Length = 1.25”
Wing Span = 9.1”.

A second set of wings was developed so that the effects of spanwise camber and the laser dot
projection technique could be investigated.  These wings have the same dimensions as wing number 3
from Figure 1, and are shown in Figure 2.  Natural rubber latex provided a membrane material that was
opaque, so that the laser dots could be easily seen when projected on it.  The latex material used was
approximately 0.006 inches thick, had a tensile strength of approximately 400 psi, and an ultimate
elongation of 750%.  A rectangular frame was selected which provides support around the entire
planform of the wing, not just along the leading edge and the root chord as in the first wing set.  It was
desired to test both stiff and flexible wings as well as wings that were alternatively straight and with
spanwise camber.  Aluminum tubing (0.0625” OD, 0.0587” ID) was used for the tube frame wings, and
six strands of (0.01” diameter) stainless steel wire twisted together were used for the wire frame wings.  

The aluminum tube frame wings were relatively stiff while the wire frame wings were flexible to
the point that flexure was visible throughout the stroke.  Spanwise camber was applied to wing sets of
each frame material such that the ratio of the straight line distance from root to tip to the distance
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measured along the frame from root to tip along the curve of the wing was approximately 0.95.  As a
point of reference, the work of Pennycuick suggests that the span of a cormorant during flight, when
normalized by the maximum span, varied from 0.7 to 1 during the stroke, demonstrating that birds
apply spanwise camber in flight [8].  

FFiigguurree  22.. Wire and Tube Frame wings with Latex Membrane.  Tube framing is aluminum tube with 1/16”OD.
Wire frame is 6 strands of stainless steel wire (0.01” diameter) twisted together.

The pivot arm of the flapping mechanism was modified so that both an extension of the leading edge
and an extension of the root chord could be secured to the pivot piece.  This was done because
preliminary tests of designs in which only the leading edge was secured led to drastic bending at the
connection location.  The Latex membrane was attached by spreading out and pinning latex to a board.
The frame was sprayed with spray adhesive and then pressed onto the Latex.  The glue was allowed to
dry for approximately 1 hour, at which point the latex was trimmed around the frame.  

Review of test results from these wing sets lead to the desire to look at a wing with a combination
of stiffness and flexibility.  For this reason, a wing was developed that was a hybrid of the two different
frames.  Aluminum tubing was used for all portions of the wing except the trailing edge and half of the
tip chord, for which a single strand of stainless steel wire was used.  Figure 3 shows the hybrid wing
frame design.  Latex was used for the membrane and was attached as before.  This wing design allowed
for some flexibility of the wing while keeping the overall planform of the wing relatively constant
during flapping.
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FFiigguurree  33.. Hybrid frame Wing with Latex membrane.  

B. Force measurement
Force measurement was done in two different ways.  Initial testing was done using a linear air bearing
table.  The air bearing table provided a nearly frictionless platform on which to mount the flapping
mechanism.  A strain gauge transducer load cell was mounted to the rigid frame of the air bearing table
such that the force from the frictionless platform could be measured.  The air bearing table was angled
slightly so that the load cell was preloaded.  This was a simple and inexpensive way of getting good
data for averaged thrust produced.  

Tests were completed for the four different carbon fiber and Mylar wings described in Section III.C
using this method.  Twenty runs were done for each wing.  For each run the load cell reading was taken
at even intervals throughout the frequency range used for the wing.  The frequency range of each wing
was based on the mechanism capability.  Larger wings require more power and therefore could not be
flapped at the high frequencies that were used for the smaller wings.  

The second method of force measurement was a six component force balance made by Modern
Machine and Tool Co.  The balance measures the following forces and moments: normal force in the
range of +/- 4 lbs (+/- 1814 g), axial force in the range of +/- 2 lbs (+/- 907g), side force in the range
of +/- 2 lbs (+/- 907g), pitch moment in the range of +/- 2 in-lbs (+/- 23,043 g-mm), roll moment in the
range of +/- 2 in-lbs  (+/- 23,043 g-mm), and yaw moment in the range of +/- 4 in-lbs (+/- 46,043 g-
mm). A National Instruments data acquisition system and Labview 8.5 were used to collect the data.
The six channels of the balance were connected to six of the eight available channels on a SCXI-1314
terminal block in accordance with the force balance manual. The terminal block was then connected to
a SCXI-1520 universal strain gauge input module.  This system is specifically designed for use with
Wheatstone bridge based strain gauges.  An excitation voltage of 5V was used.  Initial analog signal
conditioning was accomplished within the SCXI-1520 hardware for each channel individually.  The
signal is amplified in accordance with the anticipated voltage range specified by the user.  The
anticipated voltage range was given in the calibration book for the force balance provided by the
manufacturer. The calibration book by the balance manufacturer provides conversion constants from
output voltage to lbs (or in-lbs).  An adjustable anti-aliasing low-pass analog filter is applied to the
signal within the SCXI-1520.  High frequency data were not required so the low-pass filter was set to
100Hz.  A sampling rate of 200 Hz was used.  Signal Processing was performed using a Matlab script.
A 6 x 27 force interaction matrix for the balance supplied by the balance manufacturer was applied to
the voltage data during post processing, however no dynamic calibration was performed.  

This method was used for force measurement of the wire and tube framed latex membrane wings
described in Section III.C below.  Tests were completed for the four different wing types.  First, wing
sets were attached to the mechanism, giving an overall wingspan, b, of approximately 10” (0.254m).  A
tare data set was taken with the flapper motionless.  Next the voltage to the flapper motor was turned
up until the flapper started moving.  A data set of approximately 16 seconds was taken with the force
balance.  The voltage was again increased, and a new data set was taken.  This was repeated
approximately seven times.  The lowest frequency at which the mechanism can continuously operate is
approximately 3 Hz.  This limit is due to the need to overcome the static friction in the mechanism.  The
highest frequency is based on the weight of the wing, and was approximately 7.5 Hz for the wings
examined in these tests.  For each wing, 10-12 trails were run as described above.  
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In addition to processing mean values for the six components, accounting for balance interactions and
the tare, spectral content was determined.  The normal force and the axial force were averaged.  The
frequency of the given data set was determined from spectral analysis.  A block size of 1024 was used,
which produced 512 frequency data points over the Nyquist range of 0-100 Hz.  A 50% overlap was
chosen, and the PSD values from each block averaged.  Each data set contained enough points for at least
five averages using this method.  The frequency location of the first peak of the averaged PSD was taken
as the frequency of flapping for that data set.  This method gives the average flapping frequency for each
data set to within approximately +/- 0.1Hz. An example PSD for the normal force is shown in Figure 4.

FFiigguurree  44.. Power Spectral Density of Normal Force measurement from Force Balance.  Data for wire
frame wings at approximately 5.2 Hz flapping frequency.  Sample rate = 200 Hz Block size = 1024.

FFiigguurree  55.. Temporal Normal Force Data for Normal Force.  Data for four flapping cycles taken at 6.25 Hz
flapping frequency for stiff tube frame wings, flexible wire frame wings, and mechanism with no wings
attached.

Only time averaged axial and normal force data is presented in the results section, although time
accurate data were taken for each of the 6 channels of the force balance.  Time resolved normal force
data is shown in Figure 5 for the straight stiff wing set and the straight flexible wing set.  There is also
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data taken from operating the mechanism with no wings attached, which indicates that the forces are
not a remnant of the inertia of the flapping mechanism.  The data were taken at 6.25 Hz, data is
presented for four cycles, and time is normalized by the flapping period.  This demonstrates that the
balance is measuring the cyclic nature of the forces involved in flapping.  More work is planned to
improve the implementation of the time-resolved balance data because the data acquisition rate (200
Hz) is somewhat low compared to a typical flapping frequency. Here, the focus was placed on mean
force data analysis.  

C. Photogrammetry
The photogrammetry and force balance test data were acquired in AFRL’s microAVIARI bench test
laboratory.  A high speed synchronized camera system was used for both photogrammetry and to show
the operation of the mechanism and deflection of the wing.  Four Photron MC2 high speed digital
cameras were used to capture images of 512x512 pixels.  The photogrammetry analysis software
package used was PhotoModeler 6 by Eos Systems Inc.  All of the cameras were focused on one wing.
The software only requires two cameras to determine the three dimensional location of each point so
the cameras were set up such that two camera were focused on primarily on the upper half of the stroke,
and  two cameras primarily focused on the lower half of the stroke.  Most of the marker grid was visible
in images from all four cameras for the analyzed portion of the mid-stroke.  Images to be used for
photogrammetry were taken at 1000 frames per second.  The high frame rate requires a low exposure
time, which required the aperture to be completely opened in order to get enough light.  

Although no additional light was needed to see the laser dots on the wing, additional lighting was
used so that other features of the images could be distinguished, such as the reference grid.  Calibration
of the cameras was accomplished at the end of each test period.  The calibration is done to account for
the focus, aperture, and zoom settings of the lens, as well as lens aberration.  Images of the calibration
grid provided with the PhotoModeler software were captured at multiple locations and angles for each
camera.  

Two laser diodes operated at 7 mW were used for dot projection.  A projection head was attached to
each laser which created a seven by seven square structured light dot array for each laser, giving 98
total points for the combination of two lasers.  The two lasers were mounted above the wing such that
the best coverage throughout the stroke was achieved.  This was difficult because of the fact that the
projected dot array on the wing varies with the distance of the wing from the laser.  The laser array
overall size increases as the surface moves away from the laser, so good coverage was achieved in the
middle of the stroke, but coverage became sparse at the bottom of the stroke.  For our purposes this was
adequate, but because the lasers are relatively inexpensive additional lasers could have been purchased
and focused on the bottom of the stroke to alleviate this problem.  Improvement in this area could also
have been achieved by straightening the laser array with a lens at the desired size.  Once the cameras
and the lasers were set-up, the flapper was turned on and images were recorded. The lasers provided
targets approximately 5-10 pixels in diameter depending on the camera zoom and the angle at which
the laser strikes the surface.  The laser dots were relatively circular for most of the stroke analyzed,
although they became elongated near the bottom of the stroke where the laser hit the surface at a high
angle.   The frequency of flapping was estimated from the phaser strobe but was verified by checking
the number of images for a complete stroke of the wing.  For analysis, a stationary frame of reference
with known dimensions needs to be visible from each camera.  To meet this requirement a small piece
of balsa wood was marked with dots every 0.25” and attached to the top of the mechanism motor.  

Photomodeler 6 was used to analyze the images taken with the high speed cameras.  First the
calibration images were used to create four calibrated cameras.  A PhotoModeler Video (PMV) project
was then set up in which the images to be analyzed were imported and matched to the calibrated camera
used to capture the images.  The laser dots and the reference frame dots were designated using sub-
pixel marking.  This is a precise method for marking the center of the light or dark multi-pixel targets.
Many of the dots were referenced automatically by the software, but some were missed and needed to
be done manually.  Once all of the dots on all the images were sub-pixel marked, they were referenced
together.  Referencing is done by telling the program which points in different images correspond to
the same point in space.  When enough images are manually referenced, PhotoModeler was able to
orient the photos, meaning that 3D position information is assigned to each point.  The reference dots
were then used to identify the origin, the scale, and the x and y axis direction.  The 3D points are then
adjusted to the assigned coordinate system [13].  

58 Flapping Wing Micro Air Vehicle Bench Test Setup

International Journal of Micro Air Vehicles



Each point is assigned a residual when the epoch, or group of photos representing a given time, is
processed.  A table of residual values is a valuable tool to determine if there are points with large
marking residuals.  Marking residuals are discrepancies between where a mark is on a given photo and
where the program believes the mark should be from its location on the other photos.  Errors in marking
and referencing were corrected until all of the residuals were less than one pixel for each camera view.
Once an epoch was processed successfully, a tracking tool was used to move to the next epoch.
PhotoModeler has two options for tracking points, 2D tracking and 3D tracking. The 3D tracking option
was used.  In this method the initial point for search in the photos in the new epoch is found by
projecting the 3D position of each point from the previous epoch onto the photos in the new epoch.  For
the most part, the automated tracking method accurately tracks and references the points, but it is not
perfect.  To keep the accuracy of referencing, and marking in each epoch, the tracking was done one
frame at a time.  The time consuming nature of the process limited analysis to only portions of the
stroke.    

One of the drawbacks of laser dot projection versus printed dot photogrammetry is that when the
targets are projected onto the surface they move along the contour of the surface.  Meaning that for each
image in time, a given laser dot is in a different place on the surface of the wing.  This allows for an
overall view of changes in the wings contour, but does not allow for the deflection data of each point
on the wing.  When viewing the three dimensional position of the points after processing, boundaries
cannot be determined using only laser dot projection.  To help with this visualization, additional points
were added at each corner of the wing.  Since there was no target on the corners of the wing these points
were not sub-pixel marked; they were manually placed on the image where the corner appeared.
Inconsistency in this marking method increases the inaccuracy of the corner points, although the
accuracy of the corner points is not as critical as they only serve as a reference frame to help visualize
the outline of the wing.   

4. MECHANISM DESIGN
A mechanism utilizing crankshafts and push rods was developed.  An electric rotary motor drives two
crankshafts, one for each wing.  The crankshafts contain a push rod that turns the rotary motion into an
up-and-down motion.  Connecting the other end of the push rods to a pivot arm creates the basic
flapping motion desired.  Three mechanisms were designed in SolidWorks.  The first mechanism
designed is a one degree of freedom flapper that only produced motion in the stroke plane.  Only one
crankshaft and rod are required for this motion.  The mechanism is capable of adjustments of the
flapping angle by adjusting where the push rod connects to the pivot.  All testing was done with a +/-
45 degree flapping stroke.  SolidWorks allows parts to be assembled, and for motion to be imparted on
the total assembly of parts.  This enabled us to design parts, assemble the parts, and test the mechanism
operation to ensure the pieces will work together before actually producing the pieces.  Figure 6 shows
the one dimensional flapping mechanism as it was designed in SolidWorks. 

FFiigguurree  66.. SolidWorks rendering of One Degree of Freedom Flapping Mechanism
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The two degree of freedom flapping mechanism is shown at four stages of its flapping cycle in
Figure 7.  SolidWorks was used to determine the location of the leading and trailing edge of the tip
throughout the stroke.  This information was used to calculate the pitch angle, which is presented
throughout the stroke in Figure 8. As can be seen, the pitch angle is such that the leading edge is below
the trailing edge for the majority of the downstroke, while the leading edge is above the trailing edge
for the majority of the upstroke.  Dickinson, Lehmann, and Sane illustrated the benefits for thrust
production by adjusting the pitch of the wing during the stroke [15].  By rotating the wing to keep a
positive angle of attack throughout the stroke, thrust is produced throughout the stroke.

FFiigguurree  77.. SolidWorks rendering of Two Degree of Freedom Flapping Mechanism

FFiigguurree  88.. Pitch angle throughout stroke for two degree of freedom mechanism computed with
SolidWorks

The third mechanism designed using SolidWorks was capable of all three desired motions, flapping
in-plane, pitch, and out-of-plane motion.  In order to accomplish the out-of-plane motion with the same
basic crankshaft design, the arm that holds the pivot point must also be allowed to rotate.  A third
crankshaft with a third push rod was added.  The third push rod was set horizontally, and rotates the
arm that holds the pivot point.  As drawn, the mechanism would be  capable of +/-16o flapping, +/-32o

pitching, and +/-6.5o out of plane motion.  The mechanism movement and tip tracking, assuming solid
body motion, is shown in Figure 9 and Figure 10.  All of the parts for the one degree of freedom
flapping mechanism except the push rods were fabricated using an Eden Objet 500V 3-dimensional
printer.  An off-the-shelf swivel ball link and micro ball joint combination were used for the pushrods.
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A Faulhaber DC motor with a 7 tooth pinion gear and two 48 tooth gears glued to the crankshaft were
used to power the mechanism.  Ball bearings were used in all of the rotating joints.  Two 2-56 socket
head cap screws pass through the swivel ball and connected the two halves of the crankshaft.  The
completed mechanism is shown in Figure 11, although the pivot arms were changed out to better secure
the wings for testing.  The total mechanism weights approximately 67 grams, with 23 grams of the
weight attributed to the motor.  The two degree of freedom mechanism was built in the same way.  It
uses the same push rod parts and the same motor.  The flapping-pitch mechanism has a final weight of
77g and is shown in Figure 12. Naturally, these weights are too high for a flight vehicle of this size but
are suitable for a bench setup. 
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Although most of the tests reported upon in this paper were collected using the one dimensional
flapping mechanism, the flapping-pitch mechanism was built and tested.  Its operation was captured by
high speed video from four camera angles, and single frames during one cycle of its operation is shown
in Figure 13. Here, and figures to follow, the length of one cycle period, T, was verified by checking
the frames where the wing was at essentially the same position. The fractional periods (e.g. T/4, T/2,
and 3T/4) were determined by the frame number. Due to factors such as gear slop, wing deformation,
and possibly even motor unsteadiness, the position of the leading edge of the wing at T/4 and 3T/4 do
not precisely match. The straight tube frame wings were used in this demonstration. Images were
captured at 250 Hz, and the mechanism was operated at 6.1 Hz. Images from camera 2 clearly show
the pitching motion, which was expected based on the projected solid body motion, of the wing during
the stroke.  

FFiigguurree  99.. Three Degree of Freedom Flapping
Mechanism

FFiigguurree  1100.. Three Degree of Freedom Wing Tip
Tracking

FFiigguurree  1111.. Completed one Degree of Freedom
Flapping Mechanism

FFiigguurree  1122.. Completed two Degree of Freedom
Flapping Mechanism



FFiigguurree  1133.. Two Degree of Freedom Flapping Mechanism Operation at 6.1 Hz.  Images captured at 250 fps,
T is the flapping period. 

FFiigguurree  1144.. Thrust, in grams, plotted against flapping frequency, Hz, for 4 different sized carbon fiber frame wings.
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5. RESULTS
A. Load Cell Force Measurement
The load cell, used in combination with a flapping mechanism mounted on an air bearing table,
captured average thrust measurements for the carbon fiber frame wings shown in Figure 3.  The four
different wings are different sizes, but remain geometrically similar with the same aspect ratio.  Figure
14 shows the average thrust produced for the four different wing sizes.  As would be expected, thrust
increased with increased flapping frequency in every case, and the highest thrust was produced with the
wings with the highest surface area.  The average motor power requirement to produce the thrust is
shown for each wing in Figure 15.  The motor power, Pm, was calculated by multiplying the voltage
and current inputs to the motor for each case. Increasing thrust requires an increase in power.  The slope
of the lines in Figure 15, or the rate at which the power requirement increases with increased thrust is
measure of the efficiency of the wing.  

FFiigguurree  1155.. Motor power, Watts, plotted against thrust produced for 4 different sized carbon fiber frame wings.

Another way of measuring performance, taken from the rotorcraft applications is the figure of
merit [16].  The figure of merit is calculated using the thrust coefficient, CT, and power coefficient,
CP, as described in Equations 1-3 below.

(1)

(2)

(3)

Thrust, Th, is in Newtons, frequency, n, is in Hz, wingspan, b, is in meters, and motor power Pm, is in
watts.  Figure 16 shows the figure of merit plotted against thrust for each of the four wings tested.  The
figure of merit for each configuration tested is relatively low. The purpose of this testing was not to
optimize a design that would result in the highest figure of merit, but to show that calculating this
parameter is possible for flapping wing MAVs [14]. Also, the use of voltage and current to calculate
power, as opposed to shaft horsepower based torque and motor shaft speed, leads to motor
inefficiencies affecting the data. When plotted against raw thrust, the figure of merit collapses to a
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reasonable degree for each of the geometrically similar wings, though the general trend is toward higher
efficiency for the larger wings. While using a figure of merit to assess performance of the wings is
important, it must be recognized that in flapping-wing flight, both thrust and lift production must be
taken into account. Lift was not measured with this experimental apparatus, and thus the research effort
was ultimately directed toward utilizing a six-component balance. 

FFiigguurree  1166.. Figure of merit plotted against thrust for 4 different sized carbon fiber frame wings.

B. Force Balance Measurement
The force balance measurement technique provides the capability of measuring all six forces and moments
simultaneously with time accuracy.  Figure 17 shows axial force data, with reference to standard wind tunnel
terminology, acquired using one set of wings with the load cell and data acquired with the force balance taken
at the same time. The axial force is negative since thrust (in the positive x-direction) is generated with the
flapping wings. The load cell validated the capability of the balance, as small differences could be attributed
to friction in the air bearing table, or disruption of airflow from the wings by the balance stand.  

FFiigguurree  1177.. Comparison of load cell to Force Balance measurement technique results.  Straight wire frame
wings used  for testing.
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The data presented in Figures 18, 19, and 20 are the averaged values from each run.  Since the exact
same frequencies were not used for each run, the data points were broken into subsets based on flapping
frequency.  The frequencies and the force values were averaged within the subset.  The length of the
error bars was determined based on the number of data points, the standard deviation, and a 95%
confidence probability.  Since the frequencies are averaged, the calculated standard deviation will be
larger than the actual standard deviation supported by the data. 

From Figures 18 and 19 it can be seen that applying spanwise camber to the wing does lead to the
production of a significant normal force but not axial force. This can be seen in both Figures 18(b) and
19(b) where the curved frame for both cases provides a positive normal force while the straight wings
of the same length and width lead to essentially zero normal force.  This is consistent with the findings
of Hong and Altman [9], who found that for a wing with spanwise camber, the magnitude of the
positive force produced on the downstroke is larger than the negative normal force produced on the
upstroke.  The data in Figures 18(a) and 19(a) suggest that the spanwise camber does not apparently
lead to axial force production for this particular case.  For the wire frame flexible wings, the straight
wings produced more axial force than the curved wing, while for the aluminum framed wing no
significant axial force was produced by either wing. This data may be interpreted as meaning that the
passive flexure of the wing is important for the production of thrust.

Comparison of the straight wire frame wing to the straight tube frame wing, as in Figure 20, shows a
difference only in the axial force.  An increasing axial force trend is exhibited only for the wings with
flexibility, that is the hybrid frame wings and the wire frame wings, with the most thrust being produced by
the most flexible wing set.  Ho, Nassef, Pornsinsirirak, Tai, and Ho, observed that flexible wings in flapping
produced thrust, while stiff wings did not [17].  Since the attachment point of the wings is at the leading edge,
the flexibility will cause the trailing edge to lag behind the leading edge, as demonstrated by Heathcote,
Martin, and Gursul [10] and as is evident from Figure 22, at least for a significant portion of the upstroke
and downstroke.  This lag essentially causes a positive pitch angle on the upstroke and a negative pitch angle
on the downstroke, or essentially a positive AoA with regard to the flapping direction throughout the stroke.
This allows axial force to be produced in the forward direction throughout the stroke.  
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FFiigguurree  1188.. Comparison of (a) axial and (b) normal force
for straight and curved stiff tube frame wings.

FFiigguurree  1199.. Comparison of (a) axial and (b) normal force for
straight and curved flexible wire frame wings.



Most testing was done with the one degree-of-freedom flapping mechanism, but some force data
were taken from the two degree-of-freedom flapping with pitch mechanism.  The stiff tube frame
straight wings were used with the two degree-of-freedom mechanism.  The results are compared to the
results from the one degree-of-freedom mechanism using the same wings; they are shown in Figure 21.
Notice that by pitching the wing to provide for a positive angle of attack throughout the stroke, axial
force is produced. These results are generally in correspondence with the finding of many other
researchers [2,3,5,15,18].  

C. Photogrammetry and High Speed Imagery 
The differences in the normal force between the straight and curved wire frame wings were investigated
using images of the wings taken with the high speed cameras.  Figure 22 shows the curved and straight
wire frame wings at nine locations throughout the stroke for a flapping frequency of approximately 6.2
Hz.  Labels show the position in the stroke, where T is the flapping period and is equal to approximately
0.16 seconds.  As can be seen, significant flexure of the wings occurs during the stroke.  The curved
wing appears to be straightening on the downstroke and curving on the upstroke.  This could be the
reason for this increased lifting force when compared to the straight wing.  Also notice that, due to the
highly flexible nature of the wing, there are many images in which there is sparse coverage from the
laser grid.  For this reason, the flexible wings were not selected for initial analysis using the laser dot
projection technique.  

The stiff tube frame wing sets were chosen for analysis using the laser dot projection method.  As
can be seen from Figure 23, there is no visible flexure of these wings throughout the stroke.  This
provides a simpler platform for initial testing of the laser dot projection technique.  Because of the time
consuming nature of the Photomodeler process, analysis was only done for approximately 25 frames in
the upstroke and 25 frames in the downstroke for both the straight and curved wing sets. Images
throughout the stroke and from all four cameras are shown in Figure 23. 
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FFiigguurree  2200.. Comparison of (a) axial and (b) normal force
for straight tube frame, wire Frame, and hybrid frame
wings.

FFiigguurree  2211.. Comparison of (a) axial and (b) normal force for
straight stiff tube frame wings for different flapping
mechanisms.



FFiigguurree  2222.. Curved (top two rows) and straight (lower two rows) wire frame wing motion at 6.2Hz
flapping frequency. Images captured at 1000 fps. Flapping period, T, is approximately 0.16 sec.

FFiigguurree  2233.. Four high speed camera images of curved (a) and straight (b) tube frame wings with laser dot
projection at 6.2 Hz flapping frequency.
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FFiigguurree  2244.. Example plot of 3D point Locations.  Solid blue dots represent the physical corners of the
wing.  Blue ‘x’ represent laser projection targets. Green dots represent the stationary reference frame.
Note that the wing tip is furthest in the positive y-direction and the leading edge is furthest in the positive
x direction.  

Figure 24 shows the 3D location of each of the laser dots projected on the wing for one set of images;
the 3D points at three different locations within each analysis group are shown in Figure 25.  The corner
points are shown as solid circles.  The group of points to the right in the plots represents the grid of
stationary reference points used to give scaling and axis direction.  The 3D results demonstrate the
ability of the laser dot projection method to accurately characterize the kinematic motion of a stiff wing.  

For validation of the laser dot projection method of targeting, comparison to traditionally marked
targets was required.  Marker dots were placed on the wing so that there would be approximately the
same number and same spacing as the laser grid.  Two of the images used for comparison are shown in
Figure 26, and the results from photogrammetry using the two different image sets are shown in
Figure27.  As can be seen from Figure 27, the marker dots and laser dots are not located at exactly the
same position on the wing.  Because they aren’t located at the same place on the wing, comparing the
photogrammetry results using the two methods was not trivial.  
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FFiigguurree  2255.. 3D point locations for laser projected dots at 3 epochs in each analysis set. Solid blue dots
represent the physical corners of the wing.  Blue ‘x’ represent laser projection targets. Green dots
represent the reference frame.  Note that the wing tip is furthest in the positive y-direction and the
leading edge is furthest in the positive x direction.  
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FFiigguurree  2266.. Images Used for Comparison of Marker Targeting to Laser Dot-Projection Targeting.  Curved
aluminum Frame Wing used.

FFiigguurree  2277.. Results from Photogrammetry on Still Wing Using the Two Different Targeting Methods.  

In order to compare the results, the shape of the wing surface was mapped using a radial basis
function for each case.  MatLab codes, available from the MathWorks website, were used to apply this
radial basis function method. [19]  

The radial basis function method accounts for distance among the network of points. The procedure
for calculating a radial basis function is given in reference 20.  The radial distance between two points
is taken as the square root of the sum of the squares of the difference in each independent variable.  In
this case the x and y values of the points are treated as the independent variables.  The below equation
from Numerical Recipes is the basis for the radial basis function method.  
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(4)

In Equation 4, zj is an element in a vector of the dependent values, in this case the z-value of the
known points; Nk is the number of known data points gathered from the photogrammetry process; j(r)
is the radial basis function described later; and w is a vector of Nk length which represents the weight
of each of the radial basis function values.  The radial basis function is a function of the radial distance,
rj,i, between the jth known or unknown point, and the ith known point.  The radial distance is found from
the difference in the x-value of the two points, Dxj,i, and the difference in the y-value of the two points,
Dyj,i, as shown in Equation 5.    

(5)

(6)

(7)

In Equations 5-7, x and y constitute arrays of the x-values of the known points and the y-values of
the known points respectively, with each having Nk elements.    The radial distance, r, of each point
from each other point, is determined from the magnitude of the vector between the two points in the x-
y plane, as shown in Equations 5-7.  These radial distances are inputs to the radial basis function from
Equation 4.  Essentially this method assumes that the z-value of each known grid point is based on a
linear combination of the weighted radial basis function, j(r), evaluated at each value of r.   

With the assumed value for zj, this leaves the values within the array represented by w, the weights,
as the only unknowns.  Evaluating Equation 4 for a single known grid point results in one equation with
Nk unknown values in the vector w.  By evaluating this equation for each of the Nk known grid points
the system of equations is expanded to Nk equations for Nk unknown which can be solved Then,
Equations 4-7 can be used to determine the z-value at any value of x and y within the region covered
by the known grid.    

There are many different types of radial basis functions, j(r). Here, the thin-plate spline radial basis
function, given by   Equation 8, was found to give satisfactory results.

(8)

with 

The variable r0 represents a scale factor which here was set equal to unity. [20] The steps followed
to utilize this method are given in references 20 and 21. The radial basis function method described
above was done for the results from, alternatively, the marker dots and from the laser-projected dots.
A de facto calibration was performed by sampling at known x- and y- positions, and comparing the z-
position data.  An evenly spaced grid of 20 x 40 points representing a 1” x 2” section in the center of
the wing was used for comparison.  For each of the grid points, the locations in the z axis for the laser
dot surface and for the marker dot surface were determined using the radial basis function method.  The
average of the absolute value of the difference between the z values of each of the grid points was
0.0109” with a standard deviation of 0.0079”.  This represents an average difference of approximately
0.4% of the wing’s span.  Figure 28 shows the surfaces created using the two different sets of data,
evaluated over the evenly spaced grid.  Notice that for approximately half of the wing, the marker dot
surface is higher, while for the other half, the laser surface is higher.  In fact, when the difference in the
z values of the grid are averaged without taking the absolute values, the result is -0.00022 inches.  These
results show very close correlation between the two methods, validating the laser dot projection method
as an accurate method of non-intrusively determining the overall shape of a surface.  
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FFiigguurree  2288.. Surfaces Modeled Using the Radial Basis Function through Photogrammetry results from two
Different Targeting Methods.

Successful analysis led to the desire to look at wings with more aeroelasticity.  For this purpose, the
hybrid straight wing was developed and analyzed at the same flapping frequency of 6.2Hz.  Images of
the wing during flapping, shown in Figure 29, demonstrate that there is noticeable flexure, particularly
at the trailing edge of the tip, as would be anticipated from the geometry of the wing.  

FFiigguurree  2299.. High Speed Images of Hybrid Frame Wing Flapping at 6.2 Hz.

Analysis was done on the wing for 30 frames on the upstroke and 30 frames on the downstroke.  A
surface was modeled through the wing using the radial basis function method described above.  The
rectangular grid used to create the plots of the surface in Figure 30 contains 20 x 40 regularly spaced
points on the wing.  The boundaries of the grid in the x direction were found by adding 0.10 inches to
the minimum x-value on the laser grid and subtracting 0.10 inches from the maximum x-value on the
laser grid.  The boundaries in the y direction were found by adding 0.2 inches to the minimum y value
on the laser grid and subtracting 0.20 inches from the maximum y-value on the laser grid.  
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FFiigguurree  3300.. Surface Modeled to Hybrid Wing Photogrammetry results. Blue represents the wing surface,
and green dots represent the reference frame.  

Approximations of the pitch angle of the root and the tip of the wing were determined from the
surface model.  The values of the points on the outermost edge of the rectangular grid were used to
determine the tip pitch angle.  The points were projected into the x-z plane, ignoring the y component,
and the slope of a best fit line was calculated.  The arc-tangent of the slope of the best fit line was taken
as the tip pitch angle.  The root pitch angle was determined in the same way with the innermost edge
of the rectangular grid.  This is an approximate method which diminishes in accuracy as the angle of
the wing with the horizontal increases.  

In Figure 31(a) a portion of the upstroke and the downstroke, each consisting of the middle of a
cycle, are shown. It is evident that in this portion of the cycle, the pitching angle at the tip is
significantly higher during the upstroke than during the downstroke.  As suggested by other research
[10,17], this flexibility could be what is causing the axial and normal forces shown in Figure 20.  The
fact that the pitching angle at the root is relatively constant through the stroke, as shown in Figure 31(b),
is what would be expected from reviewing the frame design in Figure 5.  

FFiigguurree  3311.. Hybrid wing twist on upstroke and downstroke:  (a) Twist at wing tip (b) Twist at wing root.
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The way the shape of the wing changes, or the deflection of wing, throughout the stroke can be
difficult to visualize because of the flapping motion of the wing.  Stewart and Albertani developed an
analysis approach that separates rigid-body-motion of the wing from the deformation of the wing
during flapping.  They used a system to measure the motion of a flat plate, attached to the inboard
section of the wing, during flapping.  The motion of the flap plate was used to develop a Homogeneous
Transformation Matrix (HTM), which was applied to the motion of the flexible portions of the wing.
Applying the HTM to the motion of the flexible portion of the wing yields the wing deformation
without the wing motion [6].  

A simplified approach to that of Stewart and Albertani was taken to quantify the deformation of the
wing here.  A surface was modeled for the wing at each point using the radial basis function method.
A linear best fit line, in the y-z plane, was calculated for the points at the forward most edge of the
surface grid.  Since the leading edge of this particular wing was made of aluminum, there was minimal
flexibility in the spanwise direction at the leading edge, therefore the slope of best fit line is a good
approximation of the flapping angle.  The approximate location of the pivot point for the wing was
estimated by averaging the intersection points of the best fit lines from each frame.  The pivot point and
the flapping angle were used to adjust the y and z values for each grid point to the wing reference frame.
The wing reference frame origin is located at the pivot point, and reference frame moves with the wing
according to the flapping angle.  Finally a surface was modeled to the adjusted grid system.  Essentially
this method yields an estimate of the flapping angle by simulating the wing as a rigid flat plate.  The
surface in the new reference frame is essentially the difference between the surface formed by a
flapping rigid flat plate and the surface from the actual wing during flapping.  Results are shown for
one frame during the downstroke and one frame during the upstroke in Figure 32 and Figure 33
respectively.  These figures clearly show the difference in the pitch of the wing tip between the upstroke
and the downstroke, as is demonstrated in Figure 31.  This process isolates the wing deformation by
subtracting the flapping angle.

FFiigguurree  3322.. Deformation of the Hybrid Wing in the Wing Reference Frame for one frame in the
downstroke.
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FFiigguurree  3333.. Deformation of the Hybrid Wing in the Wing Reference Frame for one frame in the Upstroke

6. CONCLUSION
Through a cooperative effort between AFIT and the Air Vehicles Directorate of the Air Force Research
Laboratory, a static bench test setup was developed in order to gain a better understanding of Micro Air
Vehicles, specifically those with flapping wings. It is critical to have the tools to assess the performance
of micro air vehicles in order to establish whether and how a specific design might outperform others.
To this end, a variety of different tools have been developed to assess flapping-wing MAV performance,
and the main focus of this paper is to outline these measurement approaches. Leading into this work, it
was necessary to build and test flapping-wing mechanisms. 

Flapping-wing mechanisms were designed and built with many parts derived from solid modeling
tools and built with a 3-D printer. Initially, an air bearing table was used in combination with a load cell
to collect time-averaged thrust data for a one-dimensional flapping mechanism with wings designed to
passively vary pitch. The measured motor power draw was measured along with the thrust
measurement to determine power and thrust coefficients, which led to a figure of merit. This approach
was found to be useful for broadly characterizing the designs, despite the limitation to a single force
component and time-averaged measurements.

The bench test setup was substantially improved through the use of a 6-component balance and
photogrammetry. Data from the balance, low-pass filtered at 200 Hz, were acquired, and average axial
force measurements acquired from the balance were generally comparable to that acquired using the air
bearing table. A significant portion of our work was dedicated to experimenting with the
photogrammetry system to measure wing location and deformation in conjunction with a dot-projection
technique. A portion of the upstroke and of the downstroke of a flapping wing operated at a specific
frequency was analyzed using images acquired from the four-camera system. Proof-of-concept data
were acquired for a wing having a relatively stiff frame and with curvature applied along the span. The
results, specific to that wing shape, show the ability to track the kinematic motion of the stiff wing
during flapping.  

Significantly, the photogrammetry data capture system successfully employed  laser dot projection,
in lieu of physical markings on the wings in order to reduce, if not eliminate, intrusiveness. A validation
of the laser dot projection method was done on a still wing by marking the curved tube frame wing with
marker dots in a grid with approximately the same spacing as the laser grid.  A radial basis function
interpolation method was used to model the shape of the wing and to compare results from
photogrammetry using the two targeting methods.  The average difference between the two shapes from
the two different target types provided assurance that the laser dot projection approach is appropriate.
A hybrid wing was developed in order to demonstrate the ability of the laser dot projection in studying
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flexibility.  A shape was modeled to the wing, and the pitch of the wing throughout the stroke was
investigated.  The wing was found to demonstrate flexibility that both is in-line what would be expected
from the wing design as well as justifies the force measurements that were taken.  A simple method of
subtracting the flapping motion of the wing from the photogrammetry results in order to view only the
shape change of the wing was developed.  The dot projection technique, which utilized structured light
from small diode lasers, proved to be a useful way to collect wing location and deformation data for
flapping wings suitable for micro air vehicles. 
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