69 research outputs found

    Synergistic Reversal of Intrahepatic HCV-Specific CD8 T Cell Exhaustion by Combined PD-1/CTLA-4 Blockade

    Get PDF
    Viral persistence is associated with hierarchical antiviral CD8 T cell exhaustion with increased programmed death-1 (PD-1) expression. In HCV persistence, HCV-specific CD8 T cells from the liver (the site of viral replication) display increased PD-1 expression and a profound functional impairment that is not reversed by PD-1 blockade alone. Here, we report that the inhibitory receptor cytotoxic T lymphocyte-associated antigen-4 (CTLA-4) is preferentially upregulated in PD-1+ T cells from the liver but not blood of chronically HCV-infected patients. PD-1/CTLA-4 co-expression in intrahepatic T cells was associated with a profound HCV-specific effector dysfunction that was synergistically reversed by combined PD-1/CTLA-4 blockade in vitro, but not by blocking PD-1 or CTLA-4 alone. A similar effect was observed in circulating HCV-specific CD8 T cells with increased PD-1/CTLA-4 co-expression during acute hepatitis C. The functional response to combined blockade was directly associated with CTLA-4 expression, lost with CD28-depletion and CD4-independent (including CD4+FoxP3+ Tregs). We conclude that PD-1 and CTLA-4 pathways both contribute to virus-specific T cell exhaustion at the site of viral replication by a redundant mechanism that requires combined PD-1/CTLA-4 blockade to reverse. These findings provide new insights into the mechanisms of virus-specific T cell dysfunction, and suggest that the synergistic effect by combined inhibitory receptor blockade might have a therapeutic application against chronic viral infection in vivo, provided that it does not induce autoimmunity

    Liver Is Able to Activate Naïve CD8+ T Cells with Dysfunctional Anti-Viral Activity in the Murine System

    Get PDF
    The liver possesses distinct tolerogenic properties because of continuous exposure to bacterial constituents and nonpathogenic food antigen. The central immune mediators required for the generation of effective immune responses in the liver environment have not been fully elucidated. In this report, we demonstrate that the liver can indeed support effector CD8+ T cells during adenovirus infection when the T cells are primed in secondary lymphoid tissues. In contrast, when viral antigen is delivered predominantly to the liver via intravenous (IV) adenovirus infection, intrahepatic CD8+ T cells are significantly impaired in their ability to produce inflammatory cytokines and lyse target cells. Additionally, intrahepatic CD8+ T cells generated during IV adenovirus infection express elevated levels of PD-1. Notably, lower doses of adenovirus infection do not rescue the impaired effector function of intrahepatic CD8+ T cell responses. Instead, intrahepatic antigen recognition limits the generation of potent anti-viral responses at both priming and effector stages of the CD8+ T cell response and accounts for the dysfunctional CD8+ T cell response observed during IV adenovirus infection. These results also implicate that manipulation of antigen delivery will facilitate the design of improved vaccination strategies to persistent viral infection

    Stable Cytotoxic T Cell Escape Mutation in Hepatitis C Virus Is Linked to Maintenance of Viral Fitness

    Get PDF
    Mechanisms by which hepatitis C virus (HCV) evades cellular immunity to establish persistence in chronically infected individuals are not clear. Mutations in human leukocyte antigen (HLA) class I-restricted epitopes targeted by CD8+ T cells are associated with persistence, but the extent to which these mutations affect viral fitness is not fully understood. Previous work showed that the HCV quasispecies in a persistently infected chimpanzee accumulated multiple mutations in numerous class I epitopes over a period of 7 years. During the acute phase of infection, one representative epitope in the C-terminal region of the NS3/4A helicase, NS31629-1637, displayed multiple serial amino acid substitutions in major histocompatibility complex (MHC) anchor and T cell receptor (TCR) contact residues. Only one of these amino acid substitutions at position 9 (P9) of the epitope was stable in the quasispecies. We therefore assessed the effect of each mutation observed during in vivo infection on viral fitness and T cell responses using an HCV subgenomic replicon system and a recently developed in vitro infectious virus cell culture model. Mutation of a position 7 (P7) TCR-contact residue, I1635T, expectedly ablated the T cell response without affecting viral RNA replication or virion production. In contrast, two mutations at the P9 MHC-anchor residue abrogated antigen-specific T cell responses, but additionally decreased viral RNA replication and virion production. The first escape mutation, L1637P, detected in vivo only transiently at 3 mo after infection, decreased viral production, and reverted to the parental sequence in vitro. The second P9 variant, L1637S, which was stable in vivo through 7 years of follow-up, evaded the antigen-specific T cell response and did not revert in vitro despite being less optimal in virion production compared to the parental virus. These studies suggest that HCV escape mutants emerging early in infection are not necessarily stable, but are eventually replaced with variants that achieve a balance between immune evasion and fitness for replication

    Progressive Activation of CD127+132− Recent Thymic Emigrants into Terminally Differentiated CD127−132+ T-Cells in HIV-1 Infection

    Get PDF
    AIM: HIV infection is associated with distortion of T-cell homeostasis and the IL-7/IL7R axis. Progressive infection results in loss of CD127+132- and gains in CD127-132+ CD4+ and CD8+ T-cells. We investigated the correlates of loss of CD127 from the T-cell surface to understand mechanisms underlying this homeostatic dysregulation. METHODS: Peripheral and cord blood mononuclear cells (PBMCs; CBMC) from healthy volunteers and PBMC from patients with HIV infection were studied. CD127+132-, CD127+132+ and CD127-132+ T-cells were phenotyped by activation, differentiation, proliferation and survival markers. Cellular HIV-DNA content and signal-joint T-cell receptor excision circles (sjTRECs) were measured. RESULTS: CD127+132- T-cells were enriched for naïve cells while CD127-132+ T-cells were enriched for activated/terminally differentiated T-cells in CD4+ and CD8+ subsets in health and HIV infection. HIV was associated with increased proportions of activated/terminally differentiated CD127-132+ T-cells. In contrast to CD127+132- T-cells, CD127-132+ T-cells were Ki-67+Bcl-2(low) and contained increased levels of HIV-DNA. Naïve CD127+132- T-cells contained a higher proportion of sjTRECs. CONCLUSION: The loss of CD127 from the T-cell surface in HIV infection is driven by activation of CD127+132- recent thymic emigrants into CD127-132+ activated/terminally differentiated cells. This process likely results in an irreversible loss of CD127 and permanent distortion of T-cell homeostasis

    Inhibitory Receptors Are Expressed by Trypanosoma cruzi-Specific Effector T Cells and in Hearts of Subjects with Chronic Chagas Disease

    Get PDF
    We had formerly demonstrated that subjects chronically infected with Trypanosoma cruzi show impaired T cell responses closely linked with a process of T cell exhaustion. Recently, the expression of several inhibitory receptors has been associated with T cell dysfunction and exhaustion. In this study, we have examined the expression of the cytotoxic T lymphocyte antigen 4 (CTLA-4) and the leukocyte immunoglobulin like receptor 1 (LIR-1) by peripheral T. cruzi antigen-responsive IFN-gamma (IFN-γ)-producing and total T cells from chronically T. cruzi-infected subjects with different clinical forms of the disease. CTAL-4 expression was also evaluated in heart tissue sections from subjects with severe myocarditis. The majority of IFN-γ-producing CD4+ T cells responsive to a parasite lysate preparation were found to express CTLA-4 but considerably lower frequencies express LIR-1, irrespective of the clinical status of the donor. Conversely, few IFN-γ-producing T cells responsive to tetanus and diphtheria toxoids expressed CTLA-4 and LIR-1. Polyclonal stimulation with anti-CD3 antibodies induced higher frequencies of CD4+CTAL-4+ T cells in patients with severe heart disease than in asymptomatic subjects. Ligation of CTLA-4 and LIR-1 with their agonistic antibodies, in vitro, reduces IFN-γ production. Conversely, CTLA-4 blockade did not improved IFN-γ production in response to T. cruzi antigens. Subjects with chronic T. cruzi infection had increased numbers of CD4+LIR-1+ among total peripheral blood mononuclear cells, relative to uninfected individuals and these numbers decreased after treatment with benznidazole. CTLA-4 was also expressed by CD3+ T lymphocytes infiltrating heart tissues from chronically infected subjects with severe myocarditis. These findings support the conclusion that persistent infection with T. cruzi leads to the upregulation of inhibitory receptors which could alter parasite specific T cell responses in the chronic phase of Chagas disease

    Elevated levels of circulating IL-7 and IL-15 in patients with early stage prostate cancer

    Get PDF
    Background: Chronic inflammation has been suggested to favour prostate cancer (PCA) development. Interleukins (IL) represent essential inflammation mediators. IL-2, IL-7, IL-15 and IL-21, sharing a common receptor γ chain (c-γ), control T lymphocyte homeostasis and proliferation and play major roles in regulating cancer-immune system interactions. We evaluated local IL-2, IL-7, IL-15 and IL-21 gene expression in prostate tissues from patients with early stage PCA or benign prostatic hyperplasia (BPH). As control, we used IL-6 gene, encoding an IL involved in PCA progression. IL-6, IL-7 and IL-15 titres were also measured in patients' sera. Methods: Eighty patients with BPH and 79 with early (1 to 2c) stage PCA were enrolled. Gene expression in prostate tissues was analyzed by quantitative real-time PCR (qRT-PCR). Serum IL concentrations and acute phase protein titres were evaluated by ELISA. Mann-Whitney, Wilcoxon and χ2 tests were used to compare IL gene expression and serum titers in the two groups of patients. Receiver operating characteristic (ROC) curves were constructed to evaluate the possibility to distinguish sera from different groups of patients based on IL titers. Results: IL-2 and IL-21 gene expression was comparably detectable, with low frequency and at low extents, in PCA and BPH tissues. In contrast, IL-6, IL-7 and IL-15 genes were expressed more frequently (p < 0.0001, p = 0.0047 and p = 0.0085, respectively) and to significantly higher extents (p = 0.0051, p = 0.0310 and p = 0.0205, respectively) in early stage PCA than in BPH tissues. Corresponding proteins could be detected to significantly higher amounts in sera from patients with localized PCA, than in those from patients with BPH (p = 0.0153, p = 0.0174 and p = 0.0064, respectively). Analysis of ROC curves indicates that IL-7 (p = 0.0039), but not IL-6 (p = 0.2938) or IL-15 (p = 0.1804) titres were able to distinguish sera from patients with malignancy from those from patients with benign disease. Serum titres of C reactive (CRP), high mobility group B1 (HMGB1) and serum amyloid A (SAA) acute phase proteins were similar in both groups of patients. Conclusions: Expression IL-7 and IL-15 genes in prostate tissues and corresponding serum titres are significantly increased in patients with early stage PCA as compared with patients with BPH
    corecore