2,043 research outputs found

    Development of superconducting YBa2Cu3O(x) wires with low resistance electrical contacts

    Get PDF
    Materials exhibiting superconductivity above liquid nitrogen temperatures (77 K) will enable new applications of this phenomena. One of the first commercial applications of this technology will be superconducting magnets for medical imaging. However, a large number of aerospace applications of the high temperature superconducting materials have also been identified. These include magnetic suspension and balance of models in wind tunnels and resistanceless leads to anemometers. The development of superconducting wires fabricated from the ceramic materials is critical for these applications. The progress in application of a patented fiber process developed by Clemson University for the fabrication of superconducting wires is reviewed. The effect of particle size and heat treatment on the quality of materials is discussed. Recent advances made at Christopher Newport College in the development of micro-ohm resistance electrical contacts which are capable of carrying the highest reported direct current to this material is presented

    Surface and interface study of pulsed-laser-deposited off-stoichiometric NiMnSb thin films on Si(100) substrate

    Get PDF
    We report a detailed study of surface and interface properties of pulsed-laser deposited NiMnSb films on Si (100) substrate as a function of film thickness. As the thickness of films is reduced below 35 nm formation of a porous layer is observed. Porosity in this layer increases with decrease in NiMnSb film thickness. These morphological changes of the ultra thin films are reflected in the interesting transport and magnetic properties of these films. On the other hand, there are no influences of compositional in-homogeneity and surface/interface roughness on the magnetic and transport properties of the films.Comment: 13 pages, 7 figures, Submitted to Phys. Rev.

    Quantum correlations in a few-atom spin-1 Bose-Hubbard model

    Get PDF
    We study the thermal quantum correlations and entanglement in spin-1 Bose-Hubbard model with two and three particles. While we use negativity to calculate entanglement, more general non-classical correlations are quantified using a new measure based on a necessary and sufficient condition for zero-discord state. We demonstrate that the energy level crossings in the ground state of the system are signalled by both the behavior of thermal quantum correlations and entanglement

    Local Detection of Quantum Correlations with a Single Trapped Ion

    Full text link
    As one of the most striking features of quantum mechanics, quantum correlations are at the heart of quantum information science. Detection of correlations usually requires access to all the correlated subsystems. However, in many realistic scenarios this is not feasible since only some of the subsystems can be controlled and measured. Such cases can be treated as open quantum systems interacting with an inaccessible environment. Initial system-environment correlations play a fundamental role for the dynamics of open quantum systems. Following a recent proposal, we exploit the impact of the correlations on the open-system dynamics to detect system-environment quantum correlations without accessing the environment. We use two degrees of freedom of a trapped ion to model an open system and its environment. The present method does not require any assumptions about the environment, the interaction or the initial state and therefore provides a versatile tool for the study of quantum systems.Comment: 6 Pages, 5 Figures + 6 Pages, 1 Figure of Supplementary Materia

    Infrared spectral studies of Zn-substituted CuFeCrO4 spinel ferrite system

    Get PDF
    The spinel solid solution series Znx Cu1–x FeCrO4 with x = 0.0,0.2,0.4 and 0.6 has been studied by infrared absorption spectroscopy. The IR-spectrum showed two main absorption bands ν1 and ν2 in the range 400-600 cm-1 arising from tetrahedral (A) and octahedral (B) interstitial sites in the spinel lattice. The absence of ν4 band suggests that lattice vibrations are insignificant. No shoulder or splitting is observed around ν1 and ν2 bands confirming absence of Fe+2 ions in the system. The sharpening of band with Zn- content (x) is due to the fact that the system changes from inverse to normal spinel structure. The structural and optical properties are correlated and the bulk modulus, compressional and shear velocity values determined through IR spectral analysis are in good agreement to those obtained through ultrasonic pulse transmission technique.Author Affiliation: M C Chhantbar, U N Trivedi, P V Tanna, H J Shah, R P Vara, H H Joshi and K B Modi Department of Physics, Saurashtra University, Rajkot-360 005, Gujarat, India E-mail : [email protected] of Physics, Saurashtra University, Rajkot-360 005, Gujarat, Indi

    Quantum discord evolution of three-qubit states under noisy channels

    Full text link
    We investigated the dissipative dynamics of quantum discord for correlated qubits under Markovian environments. The basic idea in the present scheme is that quantum discord is more general, and possibly more robust and fundamental, than entanglement. We provide three initially correlated qubits in pure Greenberger-Horne-Zeilinger (GHZ) or W state and analyse the time evolution of the quantum discord under various dissipative channels such as: Pauli channels σx\sigma_{x}, σy\sigma_{y}, and σz\sigma_{z}, as well as depolarising channels. Surprisingly, we find that under the action of Pauli channel σx\sigma_{x}, the quantum discord of GHZ state is not affected by decoherence. For the remaining dissipative channels, the W state is more robust than the GHZ state against decoherence. Moreover, we compare the dynamics of entanglement with that of the quantum discord under the conditions in which disentanglement occurs and show that quantum discord is more robust than entanglement except for phase flip coupling of the three qubits system to the environment.Comment: 17 pages, 4 figures, accepted for publication in EPJ

    Precession of a Freely Rotating Rigid Body. Inelastic Relaxation in the Vicinity of Poles

    Get PDF
    When a solid body is freely rotating at an angular velocity Ω{\bf \Omega}, the ellipsoid of constant angular momentum, in the space Ω1,Ω2,Ω3\Omega_1, \Omega_2, \Omega_3, has poles corresponding to spinning about the minimal-inertia and maximal-inertia axes. The first pole may be considered stable if we neglect the inner dissipation, but becomes unstable if the dissipation is taken into account. This happens because the bodies dissipate energy when they rotate about any axis different from principal. In the case of an oblate symmetrical body, the angular velocity describes a circular cone about the vector of (conserved) angular momentum. In the course of relaxation, the angle of this cone decreases, so that both the angular velocity and the maximal-inertia axis of the body align along the angular momentum. The generic case of an asymmetric body is far more involved. Even the symmetrical prolate body exhibits a sophisticated behaviour, because an infinitesimally small deviation of the body's shape from a rotational symmetry (i.e., a small difference between the largest and second largest moments of inertia) yields libration: the precession trajectory is not a circle but an ellipse. In this article we show that often the most effective internal dissipation takes place at twice the frequency of the body's precession. Applications to precessing asteroids, cosmic-dust alignment, and rotating satellites are discussed.Comment: 47 pages, 1 figur

    Quantum Discord and entropic measures of quantum correlations: Optimization and behavior in finite XYXY spin chains

    Get PDF
    We discuss a generalization of the conditional entropy and one-way information deficit in quantum systems, based on general entropic forms. The formalism allows to consider simple entropic forms for which a closed evaluation of the associated optimization problem in qudit-qubit systems is shown to become feasible, allowing to approximate that of the quantum discord. As application, we examine quantum correlations of spin pairs in the exact ground state of finite XYXY spin chains in a magnetic field through the quantum discord and information deficit. While these quantities show a similar behavior, their optimizing measurements exhibit significant differences, which can be understood and predicted through the previous approximations. The remarkable behavior of these quantities in the vicinity of transverse and non-transverse factorizing fields is also discussed.Comment: 10 pages, 3 figure

    Quantum Correlation in One-dimensional Extend Quantum Compass Model

    Full text link
    We study the correlations in the one-dimensional extended quantum compass model in a transverse magnetic field. By exactly solving the Hamiltonian, we find that the quantum correlation of the ground state of one-dimensional quantum compass model is vanishing. We show that quantum discord can not only locate the quantum critical points, but also discern the orders of phase transitions. Furthermore, entanglement quantified by concurrence is also compared.Comment: 8 pages, 14 figures, to appear in Eur. Phys. J.
    corecore