49 research outputs found

    Exercise Improves Insulin Sensitivity in the Absence of Changes in Cytokines.

    Get PDF
    PURPOSE: The benefits of aerobic exercise training on insulin sensitivity in subjects with the metabolic syndrome (MetS) are, at least in part, associated with changes in cytokines. Recent studies identified novel cytokines (e.g. fractalkine, omentin and osteopontin) that are strongly involved in glucose homeostasis and therefore potentially contribute in the exercise-induced changes in insulin sensitivity. Therefore, we aim to examine changes in skeletal muscle RNA expression and plasma levels of novel cytokines after exercise training, and correlate these changes to the exercise-induced changes in insulin sensitivity. METHODS: Women with the metabolic syndrome (MetS, n=11) and healthy women (n=10) participated in a 6-month aerobic exercise training intervention (3/week, 45min per session at 65%-85% of individual heart rate reserve). Before and after training, we examined insulin sensitivity (M-value during hyperinsulinemic euglycaemic clamp), circulating blood levels of cytokines (venous blood sample; leptin, adiponectin, omentin, fraktalkin, osteopontin). Skeletal muscle RNA-expression of these cytokines (muscle biopsy) was examined in two subgroups (MetS n=6; healthy women n=6). RESULTS: At baseline, plasma levels of omentin (85.8±26.2ng/ml) and adiponectin (5.0±1.7Όg/ml) levels were significantly higher in controls compared to MetS (51.1±27.1; 3.6±1.1 respectively), and leptin levels were lower in controls (18.7±11.5ng/ml vs 53.0±23.5). M-value was significantly higher in controls (8.1±1.9mg/kg/min) than in MetS (4.0±1.7). Exercise training significantly improved M-values in both groups (P0.05). CONCLUSION: Whilst exercise training successfully improves insulin sensitivity in MetS and healthy women, we found no change in plasma and mRNA expression levels of novel cytokines

    Tödliche VerbrĂŒhung oder Lyell-Syndrom?

    No full text

    Buchbesprechungen

    No full text

    Object learning improves feature extraction but does not improve feature selection

    No full text
    A single glance at your crowded desk is enough to locate your favorite cup. But finding an unfamiliar object requires more effort. This superiority in recognition performance for learned objects has at least two possible sources. For familiar objects observers might: 1) select more informative image locations upon which to fixate their eyes, or 2) extract more information from a given eye fixation. To test these possibilities, we had observers localize fragmented objects embedded in dense displays of random contour fragments. Eight participants searched for objects in 600 images while their eye movements were recorded in three daily sessions. Performance improved as subjects trained with the objects: The number of fixations required to find an object decreased by 64% across the 3 sessions. An ideal observer model that included measures of fragment confusability was used to calculate the information available from a single fixation. Comparing human performance to the model suggested that across sessions information extraction at each eye fixation increased markedly, by an amount roughly equal to the extra information that would be extracted following a 100% increase in functional field of view. Selection of fixation locations, on the other hand, did not improve with practice

    Buchbesprechungen

    No full text

    Serum concentrations of etravirine in combination therapy of HIV infection

    No full text

    Prions: pathogenesis and reverse genetics.

    Full text link
    Spongiform encephalopathies are a group of infectious neurodegenerative diseases. The infectious agent that causes transmissible spongiform encephalopathies was termed prion by Stanley Prusiner. The prion hypothesis states that the partially protease-resistant and detergent-insoluble prion protein (PrPsc) is identical with the infectious agent, and lacks any detectable nucleic acids. Since the latter discovery, transgenic mice have contributed many important insights into the field of prion biology. The prion protein (PrPc) is encoded by the Prnp gene, and disruption of Prnp leads to resistance to infection by prions. Introduction of mutant PrPc genes into PrPc-deficient mice was used to investigate structure-activity relationships of the PrPc gene with regard to scrapie susceptibility. Ectopic expression of PrPc in PrPc knockout mice proved a useful tool for the identification of host cells competent for prion replication. Finally, the availability of PrPc knockout and transgenic mice overexpressing PrPc allowed selective reconstitution experiments aimed at expressing PrPc in neurografts or in specific populations of hemato- and lymphopoietic cells. The latter studies helped in elucidating some of the mechanisms of prion spread and disease pathogenesis
    corecore