69 research outputs found

    Entre psychiatrie et allégorie : le paradoxe du délire dans Berlin Alexanderplatz

    Get PDF
    Actes du colloque de l'Université Stendhal de Grenoble, 2008.International audienc

    A note on abscissas of Dirichlet series

    Full text link
    [EN] We present an abstract approach to the abscissas of convergence of vector-valued Dirichlet series. As a consequence we deduce that the abscissas for Hardy spaces of Dirichlet series are all equal. We also introduce and study weak versions of the abscissas for scalar-valued Dirichlet series.A. Defant: Partially supported by MINECO and FEDER MTM2017-83262-C2-1-P. A. Pérez: Supported by La Caixa Foundation, MINECO and FEDER MTM2014-57838-C2-1-P and Fundación Séneca - Región de Murcia (CARM 19368/PI/14). P. Sevilla-Peris: Supported by MINECO and FEDER MTM2017-83262-C2-1-P.Defant, A.; Pérez, A.; Sevilla Peris, P. (2019). A note on abscissas of Dirichlet series. Revista de la Real Academia de Ciencias Exactas Físicas y Naturales Serie A Matemáticas. 113(3):2639-2653. https://doi.org/10.1007/s13398-019-00647-yS263926531133Bayart, F.: Hardy spaces of Dirichlet series and their composition operators. Mon. Math. 136(3), 203–236 (2002)Bohnenblust, H.F., Hille, E.: On the absolute convergence of Dirichlet series. Ann Math. 32(3), 600–622 (1931)Bohr, H.: Über die Bedeutung der Potenzreihen unendlich vieler Variablen in der Theorie der Dirichlet–schen Reihen anns\sum \,\frac{a_n}{n^s} ∑ a n n s . Nachr. Ges. Wiss. Göttingen, Math. Phys. Kl., pp. 441–488 (1913)Bonet, J.: Abscissas of weak convergence of vector valued Dirichlet series. J. Funct. Anal. 269(12), 3914–3927 (2015)Carando, D., Defant, A., Sevilla-Peris, P.: Bohr’s absolute convergence problem for Hp\cal{H}_p H p -Dirichlet series in Banach spaces. Anal. PDE 7(2), 513–527 (2014)Carando, D., Defant, A., Sevilla-Peris, P.: Some polynomial versions of cotype and applications. J. Funct. Anal. 270(1), 68–87 (2016)Defant, A., García, D., Maestre, M., Pérez-García, D.: Bohr’s strip for vector valued Dirichlet series. Math. Ann. 342(3), 533–555 (2008)Defant, A., García, D., Maestre, M., Sevilla–Peris, P.: Dirichlet Series and Holomorphic Funcions in High Dimensions, vol. 37 of New Mathematical Monographs. Cambridge University Press, Cambridge (2019)Defant, A., Pérez, A.: Optimal comparison of the pp p -norms of Dirichlet polynomials. Israel J. Math. 221(2), 837–852 (2017)Defant, A., Pérez, A.: Hardy spaces of vector-valued Dirichlet series. Studia Math. 243(1), 53–78 (2018)Diestel, J., Jarchow, H., Tonge, A.: Absolutely summing operators, vol. 43 of Cambridge studies in advanced mathematics. Cambridge University Press, Cambridge (1995)Maurizi, B., Queffélec, H.: Some remarks on the algebra of bounded Dirichlet series. J. Fourier Anal. Appl. 16(5), 676–692 (2010)Queffélec, H., Queffélec, M.: Diophantine approximation and Dirichlet series, vol. 2 of Harish–Chandra research institute lecture notes. Hindustan Book Agency, New Delhi (2013

    Almost sure-sign convergence of Hardy-type Dirichlet series

    Get PDF
    [EN] Hartman proved in 1939 that the width of the largest possible strip in the complex plane on which a Dirichlet series is uniformly a.s.- sign convergent (i.e., converges uniformly for almost all sequences of signs epsilon (n) = +/- 1) but does not convergent absolutely, equals 1/2. We study this result from a more modern point of view within the framework of so-called Hardytype Dirichlet series with values in a Banach space.Supported by CONICET-PIP 11220130100329CO, PICT 2015-2299 and UBACyT 20020130100474BA. Supported by MICINN MTM2017-83262-C2-1-P. Supported by MICINN MTM2017-83262-C2-1-P and UPV-SP20120700.Carando, D.; Defant, A.; Sevilla Peris, P. (2018). Almost sure-sign convergence of Hardy-type Dirichlet series. Journal d Analyse Mathématique. 135(1):225-247. https://doi.org/10.1007/s11854-018-0034-yS2252471351A. Aleman, J.-F. Olsen, and E. Saksman, Fourier multipliers for Hardy spaces of Dirichlet series, Int. Math. Res. Not. IMRN 16 (2014), 4368–4378.R. Balasubramanian, B. Calado, and H. Queffélec, The Bohr inequality for ordinary Dirichlet series Studia Math. 175 (2006), 285–304.F. Bayart, Hardy spaces of Dirichlet series and their composition operators, Monatsh. Math. 136 (2002), 203–236.F. Bayart, A. Defant, L. Frerick, M. Maestre, and P. Sevilla-Peris, Monomial series expansion of Hp-functions and multipliers ofHp-Dirichlet series, Math. Ann. 368 (2017), 837–876.F. Bayart, D. Pellegrino, and J. B. Seoane-Sepúlveda, The Bohr radius of the n-dimensional polydisk is equivalent to (logn)/n\sqrt {\left( {\log n} \right)/n} ( log n ) / n , Adv. Math. 264 (2014), 726–746.F. Bayart, H. Queffélec, and K. Seip, Approximation numbers of composition operators on Hp spaces of Dirichlet series, Ann. Inst. Fourier (Grenoble) 66 (2016), 551–588.H. F. Bohnenblust and E. Hille. On the absolute convergence of Dirichlet series, Ann. of Math. (2) 32 (1931), 600–622.H. Bohr, Über die Bedeutung der Potenzreihen unendlich vieler Variablen in der Theorie der Dirichlet–schen Reihen anns\sum {\frac{{{a_n}}}{{{n^s}}}} ∑ a n n s , Nachr. Ges.Wiss. Göttingen, Math. Phys. Kl., 1913, pp. 441–488.D. Carando, A. Defant, and P. Sevilla-Peris, Bohr’s absolute convergence problem for Hp- Dirichlet series in Banach spaces, Anal. PDE 7 (2014), 513–527.D. Carando, A. Defant, and P. Sevilla-Peris, Some polynomial versions of cotype and applications, J. Funct. Anal. 270 (2016), 68–87.B. J. Cole and T. W. Gamelin, Representing measures and Hardy spaces for the infinite polydisk algebra, Proc. London Math. Soc. (3) 53 (1986), 112–142.R. de la Bretèche. Sur l’ordre de grandeur des polynômes de Dirichlet, Acta Arith. 134 (2008), 141–148.A. Defant, L. Frerick, J. Ortega-Cerdà, M. Ounäies, and K. Seip, The Bohnenblust-Hille inequality for homogeneous polynomials is hypercontractive, Ann. of Math. (2) 174 (2011), 485–497.A. Defant, D. García, M. Maestre, and D. Pérez-García, Bohr’s strip for vector valued Dirichlet series, Math. Ann. 342 (2008), 533–555.A. Defant, M. Maestre, and U. Schwarting, Bohr radii of vector valued holomorphic functions, Adv. Math. 231 (2012), 2837–2857.A. Defant and A. Pérez, Hardy spaces of vector-valued Dirichlet series, StudiaMath. (to appear), 2018 DOI: 10.4064/sm170303-26-7.A. Defant, U. Schwarting, and P. Sevilla-Peris, Estimates for vector valued Dirichlet polynomials, Monatsh. Math. 175 (2014), 89–116.J. Diestel, H. Jarchow, and A. Tonge, Absolutely Summing Operators, Cambridge University Press, Cambridge, 1995.P. Hartman, On Dirichlet series involving random coefficients, Amer. J. Math. 61 (1939), 955–964.H. Hedenmalm, P. Lindqvist, and K. Seip, A Hilbert space of Dirichlet series and systems of dilated functions in L2(0, 1), Duke Math. J. 86 (1997), 1–37.A. Hildebrand, and G. Tenenbaum, Integers without large prime factors, J. Thor. Nombres Bordeaux 5 (1993), 411–484.S. V. Konyagin and H. Queffélec, The translation 1/2 in the theory of Dirichlet series, Real Anal. Exchange 27 (2001/02) 155–175.J. Lindenstrauss and L. Tzafriri, Classical Banach Spaces. II, Springer-Verlag, Berlin, 1979.B. Maurizi and H. Queffélec, Some remarks on the algebra of bounded Dirichlet series, J. Fourier Anal. Appl. 16 (2010), 676–692.H. Queffélec, H. Bohr’s vision of ordinary Dirichlet series; old and new results, J. Anal. 3 (1995), 43–60.H. Queffélec and M. Queffélec, Diophantine Approximation and Dirichlet Series, Hindustan Book Agency, New Delhi, 2013.G. Tenenbaum, Introduction to Analytic and Probabilistic Number Theory, Cambridge University Press, Cambridge, 1995

    Local critical behaviour at aperiodic surface extended perturbation in the Ising quantum chain

    Full text link
    The surface critical behaviour of the semi--infinite one--dimensional quantum Ising model in a transverse field is studied in the presence of an aperiodic surface extended modulation. The perturbed couplings are distributed according to a generalized Fredholm sequence, leading to a marginal perturbation and varying surface exponents. The surface magnetic exponents are calculated exactly whereas the expression of the surface energy density exponent is conjectured from a finite--size scaling study. The system displays surface order at the bulk critical point, above a critical value of the modulation amplitude. It may be considered as a discrete realization of the Hilhorst--van Leeuwen model.Comment: 13 pages, TeX file + 6 figures, epsf neede

    Quantum Return Probability for Substitution Potentials

    Full text link
    We propose an effective exponent ruling the algebraic decay of the average quantum return probability for discrete Schrodinger operators. We compute it for some non-periodic substitution potentials with different degrees of randomness, and do not find a complete qualitative agreement with the spectral type of the substitution sequences themselves, i.e., more random the sequence smaller such exponent.Comment: Latex, 13 pages, 6 figures; to be published in Journal of Physics

    Radial Fredholm perturbation in the two-dimensional Ising model and gap-exponent relation

    Full text link
    We consider concentric circular defects in the two-dimensional Ising model, which are distributed according to a generalized Fredholm sequence, i. e. at exponentially increasing radii. This type of aperiodicity does not change the bulk critical behaviour but introduces a marginal extended perturbation. The critical exponent of the local magnetization is obtained through finite-size scaling, using a corner transfer matrix approach in the extreme anisotropic limit. It varies continuously with the amplitude of the modulation and is closely related to the magnetic exponent of the radial Hilhorst-van Leeuwen model. Through a conformal mapping of the system onto a strip, the gap-exponent relation is shown to remain valid for such an aperiodic defect.Comment: 12 pages, TeX file + 4 figures, epsf neede

    Anisotropic Scaling in Layered Aperiodic Ising Systems

    Full text link
    The influence of a layered aperiodic modulation of the couplings on the critical behaviour of the two-dimensional Ising model is studied in the case of marginal perturbations. The aperiodicity is found to induce anisotropic scaling. The anisotropy exponent z, given by the sum of the surface magnetization scaling dimensions, depends continuously on the modulation amplitude. Thus these systems are scale invariant but not conformally invariant at the critical point.Comment: 7 pages, 2 eps-figures, Plain TeX and epsf, minor correction

    Aperiodicity-Induced Second-Order Phase Transition in the 8-State Potts Model

    Full text link
    We investigate the critical behavior of the two-dimensional 8-state Potts model with an aperiodic distribution of the exchange interactions between nearest-neighbor rows. The model is studied numerically through intensive Monte Carlo simulations using the Swendsen-Wang cluster algorithm. The transition point is located through duality relations, and the critical behavior is investigated using FSS techniques at criticality. For strong enough fluctuations of the aperiodic sequence under consideration, a second order phase transition is found. The exponents β/ν\beta/\nu and γ/ν\gamma /\nu are obtained at the new fixed point.Comment: LaTeX file with Revtex, 4 pages, 5 eps figures, to appear in Phys. Rev. Let
    corecore