83 research outputs found
Entre psychiatrie et allégorie : le paradoxe du délire dans Berlin Alexanderplatz
Actes du colloque de l'Université Stendhal de Grenoble, 2008.International audienc
Repetitions in beta-integers
Classical crystals are solid materials containing arbitrarily long periodic
repetitions of a single motif. In this paper, we study the maximal possible
repetition of the same motif occurring in beta-integers -- one dimensional
models of quasicrystals. We are interested in beta-integers realizing only a
finite number of distinct distances between neighboring elements. In such a
case, the problem may be reformulated in terms of combinatorics on words as a
study of the index of infinite words coding beta-integers. We will solve a
particular case for beta being a quadratic non-simple Parry number.Comment: 11 page
Symbolic approach and induction in the Heisenberg group
We associate a homomorphism in the Heisenberg group to each hyperbolic
unimodular automorphism of the free group on two generators. We show that the
first return-time of some flows in "good" sections, are conjugate to
niltranslations, which have the property of being self-induced.Comment: 18 page
A note on abscissas of Dirichlet series
[EN] We present an abstract approach to the abscissas of convergence of vector-valued Dirichlet series. As a consequence we deduce that the abscissas for Hardy spaces of Dirichlet series are all equal. We also introduce and study weak versions of the abscissas for scalar-valued Dirichlet series.A. Defant: Partially supported by MINECO and FEDER MTM2017-83262-C2-1-P.
A. Pérez: Supported by La Caixa Foundation, MINECO and FEDER MTM2014-57838-C2-1-P and
Fundación Séneca - Región de Murcia (CARM 19368/PI/14).
P. Sevilla-Peris: Supported by MINECO and FEDER MTM2017-83262-C2-1-P.Defant, A.; Pérez, A.; Sevilla Peris, P. (2019). A note on abscissas of Dirichlet series. Revista de la Real Academia de Ciencias Exactas Físicas y Naturales Serie A Matemáticas. 113(3):2639-2653. https://doi.org/10.1007/s13398-019-00647-yS263926531133Bayart, F.: Hardy spaces of Dirichlet series and their composition operators. Mon. Math. 136(3), 203–236 (2002)Bohnenblust, H.F., Hille, E.: On the absolute convergence of Dirichlet series. Ann Math. 32(3), 600–622 (1931)Bohr, H.: Über die Bedeutung der Potenzreihen unendlich vieler Variablen in der Theorie der Dirichlet–schen Reihen ∑ a n n s . Nachr. Ges. Wiss. Göttingen, Math. Phys. Kl., pp. 441–488 (1913)Bonet, J.: Abscissas of weak convergence of vector valued Dirichlet series. J. Funct. Anal. 269(12), 3914–3927 (2015)Carando, D., Defant, A., Sevilla-Peris, P.: Bohr’s absolute convergence problem for H p -Dirichlet series in Banach spaces. Anal. PDE 7(2), 513–527 (2014)Carando, D., Defant, A., Sevilla-Peris, P.: Some polynomial versions of cotype and applications. J. Funct. Anal. 270(1), 68–87 (2016)Defant, A., García, D., Maestre, M., Pérez-García, D.: Bohr’s strip for vector valued Dirichlet series. Math. Ann. 342(3), 533–555 (2008)Defant, A., García, D., Maestre, M., Sevilla–Peris, P.: Dirichlet Series and Holomorphic Funcions in High Dimensions, vol. 37 of New Mathematical Monographs. Cambridge University Press, Cambridge (2019)Defant, A., Pérez, A.: Optimal comparison of the p -norms of Dirichlet polynomials. Israel J. Math. 221(2), 837–852 (2017)Defant, A., Pérez, A.: Hardy spaces of vector-valued Dirichlet series. Studia Math. 243(1), 53–78 (2018)Diestel, J., Jarchow, H., Tonge, A.: Absolutely summing operators, vol. 43 of Cambridge studies in advanced mathematics. Cambridge University Press, Cambridge (1995)Maurizi, B., Queffélec, H.: Some remarks on the algebra of bounded Dirichlet series. J. Fourier Anal. Appl. 16(5), 676–692 (2010)Queffélec, H., Queffélec, M.: Diophantine approximation and Dirichlet series, vol. 2 of Harish–Chandra research institute lecture notes. Hindustan Book Agency, New Delhi (2013
Almost sure-sign convergence of Hardy-type Dirichlet series
[EN] Hartman proved in 1939 that the width of the largest possible strip in the complex plane on which a Dirichlet series is uniformly a.s.- sign convergent (i.e., converges uniformly for almost all sequences of signs epsilon (n) = +/- 1) but does not convergent absolutely, equals 1/2. We study this result from a more modern point of view within the framework of so-called Hardytype Dirichlet series with values in a Banach space.Supported by CONICET-PIP 11220130100329CO, PICT 2015-2299 and UBACyT 20020130100474BA.
Supported by MICINN MTM2017-83262-C2-1-P.
Supported by MICINN MTM2017-83262-C2-1-P and UPV-SP20120700.Carando, D.; Defant, A.; Sevilla Peris, P. (2018). Almost sure-sign convergence of Hardy-type Dirichlet series. Journal d Analyse Mathématique. 135(1):225-247. https://doi.org/10.1007/s11854-018-0034-yS2252471351A. Aleman, J.-F. Olsen, and E. Saksman, Fourier multipliers for Hardy spaces of Dirichlet series, Int. Math. Res. Not. IMRN 16 (2014), 4368–4378.R. Balasubramanian, B. Calado, and H. Queffélec, The Bohr inequality for ordinary Dirichlet series Studia Math. 175 (2006), 285–304.F. Bayart, Hardy spaces of Dirichlet series and their composition operators, Monatsh. Math. 136 (2002), 203–236.F. Bayart, A. Defant, L. Frerick, M. Maestre, and P. Sevilla-Peris, Monomial series expansion of Hp-functions and multipliers ofHp-Dirichlet series, Math. Ann. 368 (2017), 837–876.F. Bayart, D. Pellegrino, and J. B. Seoane-Sepúlveda, The Bohr radius of the n-dimensional polydisk is equivalent to ( log n ) / n , Adv. Math. 264 (2014), 726–746.F. Bayart, H. Queffélec, and K. Seip, Approximation numbers of composition operators on Hp spaces of Dirichlet series, Ann. Inst. Fourier (Grenoble) 66 (2016), 551–588.H. F. Bohnenblust and E. Hille. On the absolute convergence of Dirichlet series, Ann. of Math. (2) 32 (1931), 600–622.H. Bohr, Über die Bedeutung der Potenzreihen unendlich vieler Variablen in der Theorie der Dirichlet–schen Reihen ∑ a n n s , Nachr. Ges.Wiss. Göttingen, Math. Phys. Kl., 1913, pp. 441–488.D. Carando, A. Defant, and P. Sevilla-Peris, Bohr’s absolute convergence problem for Hp- Dirichlet series in Banach spaces, Anal. PDE 7 (2014), 513–527.D. Carando, A. Defant, and P. Sevilla-Peris, Some polynomial versions of cotype and applications, J. Funct. Anal. 270 (2016), 68–87.B. J. Cole and T. W. Gamelin, Representing measures and Hardy spaces for the infinite polydisk algebra, Proc. London Math. Soc. (3) 53 (1986), 112–142.R. de la Bretèche. Sur l’ordre de grandeur des polynômes de Dirichlet, Acta Arith. 134 (2008), 141–148.A. Defant, L. Frerick, J. Ortega-Cerdà, M. Ounäies, and K. Seip, The Bohnenblust-Hille inequality for homogeneous polynomials is hypercontractive, Ann. of Math. (2) 174 (2011), 485–497.A. Defant, D. García, M. Maestre, and D. Pérez-García, Bohr’s strip for vector valued Dirichlet series, Math. Ann. 342 (2008), 533–555.A. Defant, M. Maestre, and U. Schwarting, Bohr radii of vector valued holomorphic functions, Adv. Math. 231 (2012), 2837–2857.A. Defant and A. Pérez, Hardy spaces of vector-valued Dirichlet series, StudiaMath. (to appear), 2018 DOI: 10.4064/sm170303-26-7.A. Defant, U. Schwarting, and P. Sevilla-Peris, Estimates for vector valued Dirichlet polynomials, Monatsh. Math. 175 (2014), 89–116.J. Diestel, H. Jarchow, and A. Tonge, Absolutely Summing Operators, Cambridge University Press, Cambridge, 1995.P. Hartman, On Dirichlet series involving random coefficients, Amer. J. Math. 61 (1939), 955–964.H. Hedenmalm, P. Lindqvist, and K. Seip, A Hilbert space of Dirichlet series and systems of dilated functions in L2(0, 1), Duke Math. J. 86 (1997), 1–37.A. Hildebrand, and G. Tenenbaum, Integers without large prime factors, J. Thor. Nombres Bordeaux 5 (1993), 411–484.S. V. Konyagin and H. Queffélec, The translation 1/2 in the theory of Dirichlet series, Real Anal. Exchange 27 (2001/02) 155–175.J. Lindenstrauss and L. Tzafriri, Classical Banach Spaces. II, Springer-Verlag, Berlin, 1979.B. Maurizi and H. Queffélec, Some remarks on the algebra of bounded Dirichlet series, J. Fourier Anal. Appl. 16 (2010), 676–692.H. Queffélec, H. Bohr’s vision of ordinary Dirichlet series; old and new results, J. Anal. 3 (1995), 43–60.H. Queffélec and M. Queffélec, Diophantine Approximation and Dirichlet Series, Hindustan Book Agency, New Delhi, 2013.G. Tenenbaum, Introduction to Analytic and Probabilistic Number Theory, Cambridge University Press, Cambridge, 1995
Log-periodic corrections to scaling: exact results for aperiodic Ising quantum chains
Log-periodic amplitudes of the surface magnetization are calculated
analytically for two Ising quantum chains with aperiodic modulations of the
couplings. The oscillating behaviour is linked to the discrete scale invariance
of the perturbations. For the Fredholm sequence, the aperiodic modulation is
marginal and the amplitudes are obtained as functions of the deviation from the
critical point. For the other sequence, the perturbation is relevant and the
critical surface magnetization is studied.Comment: 12 pages, TeX file, epsf, iopppt.tex, xref.tex which are joined. 4
postcript figure
Local critical behaviour at aperiodic surface extended perturbation in the Ising quantum chain
The surface critical behaviour of the semi--infinite one--dimensional quantum
Ising model in a transverse field is studied in the presence of an aperiodic
surface extended modulation. The perturbed couplings are distributed according
to a generalized Fredholm sequence, leading to a marginal perturbation and
varying surface exponents. The surface magnetic exponents are calculated
exactly whereas the expression of the surface energy density exponent is
conjectured from a finite--size scaling study. The system displays surface
order at the bulk critical point, above a critical value of the modulation
amplitude. It may be considered as a discrete realization of the Hilhorst--van
Leeuwen model.Comment: 13 pages, TeX file + 6 figures, epsf neede
Quantum Return Probability for Substitution Potentials
We propose an effective exponent ruling the algebraic decay of the average
quantum return probability for discrete Schrodinger operators. We compute it
for some non-periodic substitution potentials with different degrees of
randomness, and do not find a complete qualitative agreement with the spectral
type of the substitution sequences themselves, i.e., more random the sequence
smaller such exponent.Comment: Latex, 13 pages, 6 figures; to be published in Journal of Physics
Radial Fredholm perturbation in the two-dimensional Ising model and gap-exponent relation
We consider concentric circular defects in the two-dimensional Ising model,
which are distributed according to a generalized Fredholm sequence, i. e. at
exponentially increasing radii. This type of aperiodicity does not change the
bulk critical behaviour but introduces a marginal extended perturbation. The
critical exponent of the local magnetization is obtained through finite-size
scaling, using a corner transfer matrix approach in the extreme anisotropic
limit. It varies continuously with the amplitude of the modulation and is
closely related to the magnetic exponent of the radial Hilhorst-van Leeuwen
model. Through a conformal mapping of the system onto a strip, the gap-exponent
relation is shown to remain valid for such an aperiodic defect.Comment: 12 pages, TeX file + 4 figures, epsf neede
Anisotropic Scaling in Layered Aperiodic Ising Systems
The influence of a layered aperiodic modulation of the couplings on the
critical behaviour of the two-dimensional Ising model is studied in the case of
marginal perturbations. The aperiodicity is found to induce anisotropic
scaling. The anisotropy exponent z, given by the sum of the surface
magnetization scaling dimensions, depends continuously on the modulation
amplitude. Thus these systems are scale invariant but not conformally invariant
at the critical point.Comment: 7 pages, 2 eps-figures, Plain TeX and epsf, minor correction
- …